7 |
|
* G. Ward |
8 |
|
*/ |
9 |
|
|
10 |
+ |
/**************************************************************** |
11 |
+ |
1) Collect samples into a grid using the Shirley-Chiu |
12 |
+ |
angular mapping from a hemisphere to a square. |
13 |
+ |
|
14 |
+ |
2) Compute an adaptive quadtree by subdividing the grid so that |
15 |
+ |
each leaf node has at least one sample up to as many |
16 |
+ |
samples as fit nicely on a plane to within a certain |
17 |
+ |
MSE tolerance. |
18 |
+ |
|
19 |
+ |
3) Place one Gaussian lobe at each leaf node in the quadtree, |
20 |
+ |
sizing it to have a radius equal to the leaf size and |
21 |
+ |
a volume equal to the energy in that node. |
22 |
+ |
*****************************************************************/ |
23 |
+ |
|
24 |
|
#define _USE_MATH_DEFINES |
25 |
|
#include <stdio.h> |
26 |
|
#include <stdlib.h> |
29 |
|
#include "bsdfrep.h" |
30 |
|
|
31 |
|
#ifndef RSCA |
32 |
< |
#define RSCA 2.7 /* radius scaling factor (empirical) */ |
32 |
> |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
33 |
|
#endif |
34 |
+ |
#ifndef SMOOTH_MSE |
35 |
+ |
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
36 |
+ |
#endif |
37 |
+ |
#ifndef SMOOTH_MSER |
38 |
+ |
#define SMOOTH_MSER 0.07 /* acceptable relative MSE */ |
39 |
+ |
#endif |
40 |
+ |
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
41 |
+ |
|
42 |
+ |
#define RBFALLOCB 10 /* RBF allocation block size */ |
43 |
+ |
|
44 |
|
/* our loaded grid for this incident angle */ |
45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
46 |
|
|
72 |
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
73 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
74 |
|
|
75 |
< |
if (!isDSF) |
75 |
> |
if (val <= 0) /* truncate to zero */ |
76 |
> |
val = 0; |
77 |
> |
else if (!isDSF) |
78 |
|
val *= ovec[2]; /* convert from BSDF to DSF */ |
79 |
|
|
80 |
+ |
/* update BSDF histogram */ |
81 |
+ |
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
82 |
+ |
++bsdf_hist[histndx(val/ovec[2])]; |
83 |
+ |
|
84 |
|
pos_from_vec(pos, ovec); |
85 |
|
|
86 |
|
dsf_grid[pos[0]][pos[1]].vsum += val; |
87 |
|
dsf_grid[pos[0]][pos[1]].nval++; |
88 |
|
} |
89 |
|
|
90 |
< |
/* Compute radii for non-empty bins */ |
61 |
< |
/* (distance to furthest empty bin for which non-empty bin is the closest) */ |
90 |
> |
/* Compute minimum BSDF from histogram (does not clear) */ |
91 |
|
static void |
92 |
< |
compute_radii(void) |
92 |
> |
comp_bsdf_min() |
93 |
|
{ |
94 |
< |
unsigned int fill_grid[GRIDRES][GRIDRES]; |
95 |
< |
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
67 |
< |
FVECT ovec0, ovec1; |
68 |
< |
double ang2, lastang2; |
69 |
< |
int r, i, j, jn, ii, jj, inear, jnear; |
94 |
> |
int cnt; |
95 |
> |
int i, target; |
96 |
|
|
97 |
< |
r = GRIDRES/2; /* proceed in zig-zag */ |
98 |
< |
for (i = 0; i < GRIDRES; i++) |
99 |
< |
for (jn = 0; jn < GRIDRES; jn++) { |
100 |
< |
j = (i&1) ? jn : GRIDRES-1-jn; |
101 |
< |
if (dsf_grid[i][j].nval) /* find empty grid pos. */ |
102 |
< |
continue; |
103 |
< |
ovec_from_pos(ovec0, i, j); |
104 |
< |
inear = jnear = -1; /* find nearest non-empty */ |
105 |
< |
lastang2 = M_PI*M_PI; |
106 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
107 |
< |
if (ii < 0) continue; |
108 |
< |
if (ii >= GRIDRES) break; |
109 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
110 |
< |
if (jj < 0) continue; |
111 |
< |
if (jj >= GRIDRES) break; |
112 |
< |
if (!dsf_grid[ii][jj].nval) |
113 |
< |
continue; |
114 |
< |
ovec_from_pos(ovec1, ii, jj); |
115 |
< |
ang2 = 2. - 2.*DOT(ovec0,ovec1); |
116 |
< |
if (ang2 >= lastang2) |
117 |
< |
continue; |
118 |
< |
lastang2 = ang2; |
119 |
< |
inear = ii; jnear = jj; |
120 |
< |
} |
97 |
> |
cnt = 0; |
98 |
> |
for (i = HISTLEN; i--; ) |
99 |
> |
cnt += bsdf_hist[i]; |
100 |
> |
if (!cnt) { /* shouldn't happen */ |
101 |
> |
bsdf_min = 0; |
102 |
> |
return; |
103 |
> |
} |
104 |
> |
target = cnt/100; /* ignore bottom 1% */ |
105 |
> |
cnt = 0; |
106 |
> |
for (i = 0; cnt <= target; i++) |
107 |
> |
cnt += bsdf_hist[i]; |
108 |
> |
bsdf_min = histval(i-1); |
109 |
> |
} |
110 |
> |
|
111 |
> |
/* Determine if the given region is empty of grid samples */ |
112 |
> |
static int |
113 |
> |
empty_region(int x0, int x1, int y0, int y1) |
114 |
> |
{ |
115 |
> |
int x, y; |
116 |
> |
|
117 |
> |
for (x = x0; x < x1; x++) |
118 |
> |
for (y = y0; y < y1; y++) |
119 |
> |
if (dsf_grid[x][y].nval) |
120 |
> |
return(0); |
121 |
> |
return(1); |
122 |
> |
} |
123 |
> |
|
124 |
> |
/* Determine if the given region is smooth enough to be a single lobe */ |
125 |
> |
static int |
126 |
> |
smooth_region(int x0, int x1, int y0, int y1) |
127 |
> |
{ |
128 |
> |
RREAL rMtx[3][3]; |
129 |
> |
FVECT xvec; |
130 |
> |
double A, B, C, nvs, sqerr; |
131 |
> |
int x, y, n; |
132 |
> |
/* compute planar regression */ |
133 |
> |
memset(rMtx, 0, sizeof(rMtx)); |
134 |
> |
memset(xvec, 0, sizeof(xvec)); |
135 |
> |
for (x = x0; x < x1; x++) |
136 |
> |
for (y = y0; y < y1; y++) |
137 |
> |
if ((n = dsf_grid[x][y].nval) > 0) { |
138 |
> |
double z = dsf_grid[x][y].vsum; |
139 |
> |
rMtx[0][0] += x*x*(double)n; |
140 |
> |
rMtx[0][1] += x*y*(double)n; |
141 |
> |
rMtx[0][2] += x*(double)n; |
142 |
> |
rMtx[1][1] += y*y*(double)n; |
143 |
> |
rMtx[1][2] += y*(double)n; |
144 |
> |
rMtx[2][2] += (double)n; |
145 |
> |
xvec[0] += x*z; |
146 |
> |
xvec[1] += y*z; |
147 |
> |
xvec[2] += z; |
148 |
|
} |
149 |
< |
if (inear < 0) { |
150 |
< |
fprintf(stderr, |
151 |
< |
"%s: Could not find non-empty neighbor!\n", |
152 |
< |
progname); |
153 |
< |
exit(1); |
149 |
> |
rMtx[1][0] = rMtx[0][1]; |
150 |
> |
rMtx[2][1] = rMtx[1][2]; |
151 |
> |
nvs = rMtx[2][2]; |
152 |
> |
if (SDinvXform(rMtx, rMtx) != SDEnone) |
153 |
> |
return(0); |
154 |
> |
A = DOT(rMtx[0], xvec); |
155 |
> |
B = DOT(rMtx[1], xvec); |
156 |
> |
C = DOT(rMtx[2], xvec); |
157 |
> |
sqerr = 0.0; /* compute mean squared error */ |
158 |
> |
for (x = x0; x < x1; x++) |
159 |
> |
for (y = y0; y < y1; y++) |
160 |
> |
if ((n = dsf_grid[x][y].nval) > 0) { |
161 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
162 |
> |
sqerr += n*d*d; |
163 |
|
} |
164 |
< |
ang2 = sqrt(lastang2); |
165 |
< |
r = ANG2R(ang2); /* record if > previous */ |
166 |
< |
if (r > dsf_grid[inear][jnear].crad) |
167 |
< |
dsf_grid[inear][jnear].crad = r; |
106 |
< |
/* next search radius */ |
107 |
< |
r = ang2*(2.*GRIDRES/M_PI) + 3; |
108 |
< |
} |
109 |
< |
/* blur radii over hemisphere */ |
110 |
< |
memset(fill_grid, 0, sizeof(fill_grid)); |
111 |
< |
memset(fill_cnt, 0, sizeof(fill_cnt)); |
112 |
< |
for (i = 0; i < GRIDRES; i++) |
113 |
< |
for (j = 0; j < GRIDRES; j++) { |
114 |
< |
if (!dsf_grid[i][j].crad) |
115 |
< |
continue; /* missing distance */ |
116 |
< |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI); |
117 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
118 |
< |
if (ii < 0) continue; |
119 |
< |
if (ii >= GRIDRES) break; |
120 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
121 |
< |
if (jj < 0) continue; |
122 |
< |
if (jj >= GRIDRES) break; |
123 |
< |
if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r) |
124 |
< |
continue; |
125 |
< |
fill_grid[ii][jj] += dsf_grid[i][j].crad; |
126 |
< |
fill_cnt[ii][jj]++; |
127 |
< |
} |
128 |
< |
} |
129 |
< |
} |
130 |
< |
/* copy back blurred radii */ |
131 |
< |
for (i = 0; i < GRIDRES; i++) |
132 |
< |
for (j = 0; j < GRIDRES; j++) |
133 |
< |
if (fill_cnt[i][j]) |
134 |
< |
dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j]; |
164 |
> |
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
165 |
> |
return(1); |
166 |
> |
/* OR below relative MSE threshold? */ |
167 |
> |
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER); |
168 |
|
} |
169 |
|
|
170 |
< |
/* Cull points for more uniform distribution, leave all nval 0 or 1 */ |
170 |
> |
/* Create new lobe based on integrated samples in region */ |
171 |
|
static void |
172 |
< |
cull_values(void) |
172 |
> |
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
173 |
|
{ |
174 |
< |
FVECT ovec0, ovec1; |
175 |
< |
double maxang, maxang2; |
176 |
< |
int i, j, ii, jj, r; |
177 |
< |
/* simple greedy algorithm */ |
178 |
< |
for (i = 0; i < GRIDRES; i++) |
179 |
< |
for (j = 0; j < GRIDRES; j++) { |
180 |
< |
if (!dsf_grid[i][j].nval) |
181 |
< |
continue; |
182 |
< |
if (!dsf_grid[i][j].crad) |
150 |
< |
continue; /* shouldn't happen */ |
151 |
< |
ovec_from_pos(ovec0, i, j); |
152 |
< |
maxang = 2.*R2ANG(dsf_grid[i][j].crad); |
153 |
< |
if (maxang > ovec0[2]) /* clamp near horizon */ |
154 |
< |
maxang = ovec0[2]; |
155 |
< |
r = maxang*(2.*GRIDRES/M_PI) + 1; |
156 |
< |
maxang2 = maxang*maxang; |
157 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
158 |
< |
if (ii < 0) continue; |
159 |
< |
if (ii >= GRIDRES) break; |
160 |
< |
for (jj = j-r; jj <= j+r; jj++) { |
161 |
< |
if (jj < 0) continue; |
162 |
< |
if (jj >= GRIDRES) break; |
163 |
< |
if (!dsf_grid[ii][jj].nval) |
164 |
< |
continue; |
165 |
< |
if ((ii == i) & (jj == j)) |
166 |
< |
continue; /* don't get self-absorbed */ |
167 |
< |
ovec_from_pos(ovec1, ii, jj); |
168 |
< |
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
169 |
< |
continue; |
170 |
< |
/* absorb sum */ |
171 |
< |
dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum; |
172 |
< |
dsf_grid[i][j].nval += dsf_grid[ii][jj].nval; |
173 |
< |
/* keep value, though */ |
174 |
< |
dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval; |
175 |
< |
dsf_grid[ii][jj].nval = 0; |
176 |
< |
} |
177 |
< |
} |
174 |
> |
double vtot = 0.0; |
175 |
> |
int nv = 0; |
176 |
> |
double rad; |
177 |
> |
int x, y; |
178 |
> |
/* compute average for region */ |
179 |
> |
for (x = x0; x < x1; x++) |
180 |
> |
for (y = y0; y < y1; y++) { |
181 |
> |
vtot += dsf_grid[x][y].vsum; |
182 |
> |
nv += dsf_grid[x][y].nval; |
183 |
|
} |
184 |
< |
/* final averaging pass */ |
185 |
< |
for (i = 0; i < GRIDRES; i++) |
186 |
< |
for (j = 0; j < GRIDRES; j++) |
187 |
< |
if (dsf_grid[i][j].nval > 1) { |
188 |
< |
dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval; |
189 |
< |
dsf_grid[i][j].nval = 1; |
190 |
< |
} |
184 |
> |
if (!nv) { |
185 |
> |
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
186 |
> |
progname); |
187 |
> |
exit(1); |
188 |
> |
} |
189 |
> |
/* peak value based on integral */ |
190 |
> |
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
191 |
> |
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
192 |
> |
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
193 |
> |
rvp->crad = ANG2R(rad); |
194 |
> |
rvp->gx = (x0+x1)>>1; |
195 |
> |
rvp->gy = (y0+y1)>>1; |
196 |
|
} |
197 |
|
|
198 |
+ |
/* Recursive function to build radial basis function representation */ |
199 |
+ |
static int |
200 |
+ |
build_rbfrep(RBFVAL **arp, int *np, int x0, int x1, int y0, int y1) |
201 |
+ |
{ |
202 |
+ |
int xmid = (x0+x1)>>1; |
203 |
+ |
int ymid = (y0+y1)>>1; |
204 |
+ |
int branched[4]; |
205 |
+ |
int nadded, nleaves; |
206 |
+ |
/* need to make this a leaf? */ |
207 |
+ |
if (empty_region(x0, xmid, y0, ymid) || |
208 |
+ |
empty_region(xmid, x1, y0, ymid) || |
209 |
+ |
empty_region(x0, xmid, ymid, y1) || |
210 |
+ |
empty_region(xmid, x1, ymid, y1)) |
211 |
+ |
return(0); |
212 |
+ |
/* add children (branches+leaves) */ |
213 |
+ |
if ((branched[0] = build_rbfrep(arp, np, x0, xmid, y0, ymid)) < 0) |
214 |
+ |
return(-1); |
215 |
+ |
if ((branched[1] = build_rbfrep(arp, np, xmid, x1, y0, ymid)) < 0) |
216 |
+ |
return(-1); |
217 |
+ |
if ((branched[2] = build_rbfrep(arp, np, x0, xmid, ymid, y1)) < 0) |
218 |
+ |
return(-1); |
219 |
+ |
if ((branched[3] = build_rbfrep(arp, np, xmid, x1, ymid, y1)) < 0) |
220 |
+ |
return(-1); |
221 |
+ |
nadded = branched[0] + branched[1] + branched[2] + branched[3]; |
222 |
+ |
nleaves = !branched[0] + !branched[1] + !branched[2] + !branched[3]; |
223 |
+ |
if (!nleaves) /* nothing but branches? */ |
224 |
+ |
return(nadded); |
225 |
+ |
/* combine 4 leaves into 1? */ |
226 |
+ |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) && |
227 |
+ |
smooth_region(x0, x1, y0, y1)) |
228 |
+ |
return(0); |
229 |
+ |
/* need more array space? */ |
230 |
+ |
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) { |
231 |
+ |
*arp = (RBFVAL *)realloc(*arp, |
232 |
+ |
sizeof(RBFVAL)*(*np+nleaves-1+(1<<RBFALLOCB))); |
233 |
+ |
if (*arp == NULL) |
234 |
+ |
return(-1); |
235 |
+ |
} |
236 |
+ |
/* create lobes for leaves */ |
237 |
+ |
if (!branched[0]) |
238 |
+ |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
239 |
+ |
if (!branched[1]) |
240 |
+ |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
241 |
+ |
if (!branched[2]) |
242 |
+ |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
243 |
+ |
if (!branched[3]) |
244 |
+ |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
245 |
+ |
nadded += nleaves; |
246 |
+ |
return(nadded); |
247 |
+ |
} |
248 |
+ |
|
249 |
|
/* Count up filled nodes and build RBF representation from current grid */ |
250 |
|
RBFNODE * |
251 |
< |
make_rbfrep(void) |
251 |
> |
make_rbfrep() |
252 |
|
{ |
192 |
– |
int niter = 16; |
193 |
– |
double lastVar, thisVar = 100.; |
194 |
– |
int nn; |
253 |
|
RBFNODE *newnode; |
254 |
< |
RBFVAL *itera; |
255 |
< |
int i, j; |
256 |
< |
/* compute RBF radii */ |
257 |
< |
compute_radii(); |
258 |
< |
/* coagulate lobes */ |
259 |
< |
cull_values(); |
260 |
< |
nn = 0; /* count selected bins */ |
261 |
< |
for (i = 0; i < GRIDRES; i++) |
262 |
< |
for (j = 0; j < GRIDRES; j++) |
263 |
< |
nn += dsf_grid[i][j].nval; |
264 |
< |
/* allocate RBF array */ |
207 |
< |
newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
254 |
> |
RBFVAL *rbfarr; |
255 |
> |
int nn; |
256 |
> |
/* compute minimum BSDF */ |
257 |
> |
comp_bsdf_min(); |
258 |
> |
/* create RBF node list */ |
259 |
> |
rbfarr = NULL; nn = 0; |
260 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
261 |
> |
goto memerr; |
262 |
> |
/* (re)allocate RBF array */ |
263 |
> |
newnode = (RBFNODE *)realloc(rbfarr, |
264 |
> |
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
265 |
|
if (newnode == NULL) |
266 |
|
goto memerr; |
267 |
+ |
/* copy computed lobes into RBF node */ |
268 |
+ |
memmove(newnode->rbfa, newnode, sizeof(RBFVAL)*nn); |
269 |
|
newnode->ord = -1; |
270 |
|
newnode->next = NULL; |
271 |
|
newnode->ejl = NULL; |
273 |
|
newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
274 |
|
newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
275 |
|
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]); |
276 |
< |
newnode->vtotal = 0; |
276 |
> |
newnode->vtotal = .0; |
277 |
|
newnode->nrbf = nn; |
278 |
< |
nn = 0; /* fill RBF array */ |
279 |
< |
for (i = 0; i < GRIDRES; i++) |
280 |
< |
for (j = 0; j < GRIDRES; j++) |
222 |
< |
if (dsf_grid[i][j].nval) { |
223 |
< |
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
224 |
< |
newnode->rbfa[nn].crad = RSCA*dsf_grid[i][j].crad + .5; |
225 |
< |
newnode->rbfa[nn].gx = i; |
226 |
< |
newnode->rbfa[nn].gy = j; |
227 |
< |
++nn; |
228 |
< |
} |
229 |
< |
/* iterate to improve interpolation accuracy */ |
230 |
< |
itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf); |
231 |
< |
if (itera == NULL) |
232 |
< |
goto memerr; |
233 |
< |
memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf); |
234 |
< |
do { |
235 |
< |
double dsum = 0, dsum2 = 0; |
236 |
< |
nn = 0; |
237 |
< |
for (i = 0; i < GRIDRES; i++) |
238 |
< |
for (j = 0; j < GRIDRES; j++) |
239 |
< |
if (dsf_grid[i][j].nval) { |
240 |
< |
FVECT odir; |
241 |
< |
double corr; |
242 |
< |
ovec_from_pos(odir, i, j); |
243 |
< |
itera[nn++].peak *= corr = |
244 |
< |
dsf_grid[i][j].vsum / |
245 |
< |
eval_rbfrep(newnode, odir); |
246 |
< |
dsum += 1. - corr; |
247 |
< |
dsum2 += (1.-corr)*(1.-corr); |
248 |
< |
} |
249 |
< |
memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf); |
250 |
< |
lastVar = thisVar; |
251 |
< |
thisVar = dsum2/(double)nn; |
278 |
> |
/* compute sum for normalization */ |
279 |
> |
while (nn-- > 0) |
280 |
> |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn]); |
281 |
|
#ifdef DEBUG |
282 |
< |
fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n", |
254 |
< |
100.*dsum/(double)nn, |
255 |
< |
100.*sqrt(thisVar)); |
256 |
< |
#endif |
257 |
< |
} while (--niter > 0 && lastVar-thisVar > 0.02*lastVar); |
258 |
< |
|
259 |
< |
free(itera); |
260 |
< |
nn = 0; /* compute sum for normalization */ |
261 |
< |
while (nn < newnode->nrbf) |
262 |
< |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]); |
263 |
< |
#ifdef DEBUG |
282 |
> |
fprintf(stderr, "Built RBF with %d lobes\n", newnode->nrbf); |
283 |
|
fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n", |
284 |
|
get_theta180(newnode->invec), get_phi360(newnode->invec), |
285 |
|
newnode->vtotal); |