| 14 |
|
#include <math.h> |
| 15 |
|
#include "bsdfrep.h" |
| 16 |
|
|
| 17 |
< |
#ifndef RSCA |
| 18 |
< |
#define RSCA 2.7 /* radius scaling factor (empirical) */ |
| 17 |
> |
#ifndef MINRSCA |
| 18 |
> |
#define MINRSCA 0.5 /* minimum radius scaling factor */ |
| 19 |
|
#endif |
| 20 |
+ |
#ifndef MAXRSCA |
| 21 |
+ |
#define MAXRSCA 2.7 /* maximum radius scaling factor */ |
| 22 |
+ |
#endif |
| 23 |
+ |
#ifndef DIFFTHRESH |
| 24 |
+ |
#define DIFFTHRESH 0.2 /* culling difference threshold */ |
| 25 |
+ |
#endif |
| 26 |
|
#ifndef MAXFRAC |
| 27 |
|
#define MAXFRAC 0.5 /* maximum contribution to neighbor */ |
| 28 |
|
#endif |
| 75 |
|
dsf_grid[pos[0]][pos[1]].nval++; |
| 76 |
|
} |
| 77 |
|
|
| 78 |
+ |
/* Check if the two DSF values are significantly different */ |
| 79 |
+ |
static int |
| 80 |
+ |
big_diff(double ref, double tst) |
| 81 |
+ |
{ |
| 82 |
+ |
if (ref > 0) { |
| 83 |
+ |
tst = tst/ref - 1.; |
| 84 |
+ |
if (tst < 0) tst = -tst; |
| 85 |
+ |
} else |
| 86 |
+ |
tst *= 50.; |
| 87 |
+ |
return(tst > DIFFTHRESH); |
| 88 |
+ |
} |
| 89 |
+ |
|
| 90 |
|
/* Compute radii for non-empty bins */ |
| 91 |
< |
/* (distance to furthest empty bin for which non-empty bin is the closest) */ |
| 91 |
> |
/* (distance to furthest empty bin for which non-empty test bin is closest) */ |
| 92 |
|
static void |
| 93 |
|
compute_radii(void) |
| 94 |
|
{ |
| 95 |
+ |
const int cradmin = ANG2R(.5*M_PI/GRIDRES); |
| 96 |
|
unsigned int fill_grid[GRIDRES][GRIDRES]; |
| 97 |
|
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
| 98 |
|
FVECT ovec0, ovec1; |
| 137 |
|
/* next search radius */ |
| 138 |
|
r = ang2*(2.*GRIDRES/M_PI) + 3; |
| 139 |
|
} |
| 140 |
+ |
for (i = 0; i < GRIDRES; i++) /* grow radii where uniform */ |
| 141 |
+ |
for (j = 0; j < GRIDRES; j++) { |
| 142 |
+ |
double midmean; |
| 143 |
+ |
if (!dsf_grid[i][j].nval) |
| 144 |
+ |
continue; |
| 145 |
+ |
midmean = dsf_grid[i][j].vsum / (double)dsf_grid[i][j].nval; |
| 146 |
+ |
r = R2ANG(dsf_grid[i][j].crad)*(MAXRSCA*GRIDRES/M_PI); |
| 147 |
+ |
while (++r < GRIDRES) { /* attempt to grow perimeter */ |
| 148 |
+ |
for (ii = i-r; ii <= i+r; ii++) { |
| 149 |
+ |
int jstep = 1; |
| 150 |
+ |
if (ii < 0) continue; |
| 151 |
+ |
if (ii >= GRIDRES) break; |
| 152 |
+ |
if ((i-r < ii) & (ii < i+r)) |
| 153 |
+ |
jstep = r<<1; |
| 154 |
+ |
for (jj = j-r; jj <= j+r; jj += jstep) { |
| 155 |
+ |
if (jj < 0) continue; |
| 156 |
+ |
if (jj >= GRIDRES) break; |
| 157 |
+ |
if (dsf_grid[ii][jj].nval && big_diff(midmean, |
| 158 |
+ |
dsf_grid[ii][jj].vsum / |
| 159 |
+ |
(double)dsf_grid[ii][jj].nval)) |
| 160 |
+ |
goto hit_diff; |
| 161 |
+ |
} |
| 162 |
+ |
} |
| 163 |
+ |
} |
| 164 |
+ |
hit_diff: --r; |
| 165 |
+ |
dsf_grid[i][j].crad = ANG2R(r*(M_PI/MAXRSCA/GRIDRES)); |
| 166 |
+ |
if (dsf_grid[i][j].crad < cradmin) |
| 167 |
+ |
dsf_grid[i][j].crad = cradmin; |
| 168 |
+ |
} |
| 169 |
|
/* blur radii over hemisphere */ |
| 170 |
|
memset(fill_grid, 0, sizeof(fill_grid)); |
| 171 |
|
memset(fill_cnt, 0, sizeof(fill_cnt)); |
| 172 |
|
for (i = 0; i < GRIDRES; i++) |
| 173 |
|
for (j = 0; j < GRIDRES; j++) { |
| 174 |
< |
if (!dsf_grid[i][j].crad) |
| 175 |
< |
continue; /* missing distance */ |
| 176 |
< |
r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI); |
| 174 |
> |
if (!dsf_grid[i][j].nval) |
| 175 |
> |
continue; /* not part of this */ |
| 176 |
> |
r = R2ANG(dsf_grid[i][j].crad)*(2.*MAXRSCA*GRIDRES/M_PI); |
| 177 |
|
for (ii = i-r; ii <= i+r; ii++) { |
| 178 |
|
if (ii < 0) continue; |
| 179 |
|
if (ii >= GRIDRES) break; |
| 210 |
|
continue; /* shouldn't happen */ |
| 211 |
|
ovec_from_pos(ovec0, i, j); |
| 212 |
|
maxang = 2.*R2ANG(dsf_grid[i][j].crad); |
| 213 |
< |
if (maxang > ovec0[2]) /* clamp near horizon */ |
| 214 |
< |
maxang = ovec0[2]; |
| 213 |
> |
/* clamp near horizon */ |
| 214 |
> |
if (maxang > output_orient*ovec0[2]) |
| 215 |
> |
maxang = output_orient*ovec0[2]; |
| 216 |
|
r = maxang*(2.*GRIDRES/M_PI) + 1; |
| 217 |
|
maxang2 = maxang*maxang; |
| 218 |
|
for (ii = i-r; ii <= i+r; ii++) { |
| 219 |
|
if (ii < 0) continue; |
| 220 |
|
if (ii >= GRIDRES) break; |
| 221 |
|
for (jj = j-r; jj <= j+r; jj++) { |
| 222 |
+ |
if ((ii == i) & (jj == j)) |
| 223 |
+ |
continue; /* don't get self-absorbed */ |
| 224 |
|
if (jj < 0) continue; |
| 225 |
|
if (jj >= GRIDRES) break; |
| 226 |
|
if (!dsf_grid[ii][jj].nval) |
| 227 |
|
continue; |
| 177 |
– |
if ((ii == i) & (jj == j)) |
| 178 |
– |
continue; /* don't get self-absorbed */ |
| 228 |
|
ovec_from_pos(ovec1, ii, jj); |
| 229 |
|
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
| 230 |
|
continue; |
| 303 |
|
adj_coded_radius(const int i, const int j) |
| 304 |
|
{ |
| 305 |
|
const double rad0 = R2ANG(dsf_grid[i][j].crad); |
| 306 |
< |
double currad = RSCA * rad0; |
| 306 |
> |
const double minrad = MINRSCA * rad0; |
| 307 |
> |
double currad = MAXRSCA * rad0; |
| 308 |
|
int neigh[NNEIGH][2]; |
| 309 |
|
int n; |
| 310 |
|
FVECT our_dir; |
| 324 |
|
if (rad_ok2 >= currad*currad) |
| 325 |
|
continue; /* value fraction OK */ |
| 326 |
|
currad = sqrt(rad_ok2); /* else reduce lobe radius */ |
| 327 |
< |
if (currad <= rad0) /* limit how small we'll go */ |
| 328 |
< |
return(dsf_grid[i][j].crad); |
| 327 |
> |
if (currad <= minrad) /* limit how small we'll go */ |
| 328 |
> |
return(ANG2R(minrad)); |
| 329 |
|
} |
| 330 |
|
return(ANG2R(currad)); /* encode selected radius */ |
| 331 |
|
} |
| 334 |
|
RBFNODE * |
| 335 |
|
make_rbfrep(void) |
| 336 |
|
{ |
| 337 |
+ |
long cradsum = 0, ocradsum = 0; |
| 338 |
|
int niter = 16; |
| 339 |
|
double lastVar, thisVar = 100.; |
| 340 |
|
int nn; |
| 341 |
|
RBFNODE *newnode; |
| 342 |
|
RBFVAL *itera; |
| 343 |
|
int i, j; |
| 344 |
+ |
|
| 345 |
+ |
#ifdef DEBUG |
| 346 |
+ |
{ |
| 347 |
+ |
int maxcnt = 0, nempty = 0; |
| 348 |
+ |
long cntsum = 0; |
| 349 |
+ |
for (i = 0; i < GRIDRES; i++) |
| 350 |
+ |
for (j = 0; j < GRIDRES; j++) |
| 351 |
+ |
if (!dsf_grid[i][j].nval) { |
| 352 |
+ |
++nempty; |
| 353 |
+ |
} else { |
| 354 |
+ |
if (dsf_grid[i][j].nval > maxcnt) |
| 355 |
+ |
maxcnt = dsf_grid[i][j].nval; |
| 356 |
+ |
cntsum += dsf_grid[i][j].nval; |
| 357 |
+ |
} |
| 358 |
+ |
fprintf(stderr, "Average, maximum bin count: %d, %d (%.1f%% empty)\n", |
| 359 |
+ |
(int)(cntsum/((GRIDRES*GRIDRES)-nempty)), maxcnt, |
| 360 |
+ |
100./(GRIDRES*GRIDRES)*nempty); |
| 361 |
+ |
} |
| 362 |
+ |
#endif |
| 363 |
|
/* compute RBF radii */ |
| 364 |
|
compute_radii(); |
| 365 |
|
/* coagulate lobes */ |
| 388 |
|
for (j = 0; j < GRIDRES; j++) |
| 389 |
|
if (dsf_grid[i][j].nval) { |
| 390 |
|
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
| 391 |
+ |
ocradsum += dsf_grid[i][j].crad; |
| 392 |
+ |
cradsum += |
| 393 |
|
newnode->rbfa[nn].crad = adj_coded_radius(i, j); |
| 394 |
|
newnode->rbfa[nn].gx = i; |
| 395 |
|
newnode->rbfa[nn].gy = j; |
| 396 |
|
++nn; |
| 397 |
|
} |
| 398 |
+ |
#ifdef DEBUG |
| 399 |
+ |
fprintf(stderr, |
| 400 |
+ |
"Average radius reduced from %.2f to %.2f degrees for %d lobes\n", |
| 401 |
+ |
180./M_PI*MAXRSCA*R2ANG(ocradsum/newnode->nrbf), |
| 402 |
+ |
180./M_PI*R2ANG(cradsum/newnode->nrbf), newnode->nrbf); |
| 403 |
+ |
#endif |
| 404 |
|
/* iterate to improve interpolation accuracy */ |
| 405 |
|
itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf); |
| 406 |
|
if (itera == NULL) |