7 |
|
* G. Ward |
8 |
|
*/ |
9 |
|
|
10 |
+ |
/**************************************************************** |
11 |
+ |
1) Collect samples into a grid using the Shirley-Chiu |
12 |
+ |
angular mapping from a hemisphere to a square. |
13 |
+ |
|
14 |
+ |
2) Compute an adaptive quadtree by subdividing the grid so that |
15 |
+ |
each leaf node has at least one sample up to as many |
16 |
+ |
samples as fit nicely on a plane to within a certain |
17 |
+ |
MSE tolerance. |
18 |
+ |
|
19 |
+ |
3) Place one Gaussian lobe at each leaf node in the quadtree, |
20 |
+ |
sizing it to have a radius equal to the leaf size and |
21 |
+ |
a volume equal to the energy in that node. |
22 |
+ |
*****************************************************************/ |
23 |
+ |
|
24 |
|
#define _USE_MATH_DEFINES |
25 |
|
#include <stdio.h> |
26 |
|
#include <stdlib.h> |
29 |
|
#include "bsdfrep.h" |
30 |
|
|
31 |
|
#ifndef RSCA |
32 |
< |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
32 |
> |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
33 |
|
#endif |
34 |
|
#ifndef SMOOTH_MSE |
35 |
|
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
36 |
|
#endif |
37 |
|
#ifndef SMOOTH_MSER |
38 |
< |
#define SMOOTH_MSER 0.07 /* acceptable relative MSE */ |
38 |
> |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
39 |
|
#endif |
40 |
|
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
41 |
|
|
42 |
|
#define RBFALLOCB 10 /* RBF allocation block size */ |
43 |
|
|
44 |
< |
/* our loaded grid for this incident angle */ |
44 |
> |
/* loaded grid or comparison DSFs */ |
45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
46 |
+ |
/* allocated chrominance sums if any */ |
47 |
+ |
float (*spec_grid)[GRIDRES][GRIDRES]; |
48 |
+ |
int nspec_grid = 0; |
49 |
|
|
50 |
+ |
/* Set up visible spectrum sampling */ |
51 |
+ |
void |
52 |
+ |
set_spectral_samples(int nspec) |
53 |
+ |
{ |
54 |
+ |
if (rbf_colorimetry == RBCunknown) { |
55 |
+ |
if (nspec_grid > 0) { |
56 |
+ |
free(spec_grid); |
57 |
+ |
spec_grid = NULL; |
58 |
+ |
nspec_grid = 0; |
59 |
+ |
} |
60 |
+ |
if (nspec == 1) { |
61 |
+ |
rbf_colorimetry = RBCphotopic; |
62 |
+ |
return; |
63 |
+ |
} |
64 |
+ |
if (nspec == 3) { |
65 |
+ |
rbf_colorimetry = RBCtristimulus; |
66 |
+ |
spec_grid = (float (*)[GRIDRES][GRIDRES])calloc( |
67 |
+ |
2*GRIDRES*GRIDRES, sizeof(float) ); |
68 |
+ |
if (spec_grid == NULL) |
69 |
+ |
goto mem_error; |
70 |
+ |
nspec_grid = 2; |
71 |
+ |
return; |
72 |
+ |
} |
73 |
+ |
fprintf(stderr, |
74 |
+ |
"%s: only 1 or 3 spectral samples currently supported\n", |
75 |
+ |
progname); |
76 |
+ |
exit(1); |
77 |
+ |
} |
78 |
+ |
if (nspec != nspec_grid+1) { |
79 |
+ |
fprintf(stderr, |
80 |
+ |
"%s: number of spectral samples cannot be changed\n", |
81 |
+ |
progname); |
82 |
+ |
exit(1); |
83 |
+ |
} |
84 |
+ |
return; |
85 |
+ |
mem_error: |
86 |
+ |
fprintf(stderr, "%s: out of memory in set_spectral_samples()\n", |
87 |
+ |
progname); |
88 |
+ |
exit(1); |
89 |
+ |
} |
90 |
+ |
|
91 |
|
/* Start new DSF input grid */ |
92 |
|
void |
93 |
|
new_bsdf_data(double new_theta, double new_phi) |
95 |
|
if (!new_input_direction(new_theta, new_phi)) |
96 |
|
exit(1); |
97 |
|
memset(dsf_grid, 0, sizeof(dsf_grid)); |
98 |
+ |
if (nspec_grid > 0) |
99 |
+ |
memset(spec_grid, 0, sizeof(float)*GRIDRES*GRIDRES*nspec_grid); |
100 |
|
} |
101 |
|
|
102 |
|
/* Add BSDF data point */ |
103 |
|
void |
104 |
< |
add_bsdf_data(double theta_out, double phi_out, double val, int isDSF) |
104 |
> |
add_bsdf_data(double theta_out, double phi_out, const double val[], int isDSF) |
105 |
|
{ |
106 |
|
FVECT ovec; |
107 |
+ |
double cfact, Yval; |
108 |
|
int pos[2]; |
109 |
|
|
110 |
+ |
if (nspec_grid > 2) { |
111 |
+ |
fprintf(stderr, "%s: unsupported color space\n", progname); |
112 |
+ |
exit(1); |
113 |
+ |
} |
114 |
|
if (!output_orient) /* check output orientation */ |
115 |
|
output_orient = 1 - 2*(theta_out > 90.); |
116 |
|
else if (output_orient > 0 ^ theta_out < 90.) { |
117 |
< |
fputs("Cannot handle output angles on both sides of surface\n", |
118 |
< |
stderr); |
117 |
> |
fprintf(stderr, |
118 |
> |
"%s: cannot handle output angles on both sides of surface\n", |
119 |
> |
progname); |
120 |
|
exit(1); |
121 |
|
} |
122 |
|
ovec[2] = sin((M_PI/180.)*theta_out); |
123 |
|
ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2]; |
124 |
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
125 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
126 |
+ |
/* BSDF to DSF correction */ |
127 |
+ |
cfact = isDSF ? 1. : ovec[2]; |
128 |
|
|
129 |
< |
if (val <= 0) /* truncate to zero */ |
62 |
< |
val = 0; |
63 |
< |
else if (!isDSF) |
64 |
< |
val *= ovec[2]; /* convert from BSDF to DSF */ |
65 |
< |
|
129 |
> |
Yval = cfact * val[rbf_colorimetry==RBCtristimulus]; |
130 |
|
/* update BSDF histogram */ |
131 |
< |
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
132 |
< |
++bsdf_hist[histndx(val/ovec[2])]; |
131 |
> |
if (BSDF2SML*ovec[2] < Yval && Yval < BSDF2BIG*ovec[2]) |
132 |
> |
++bsdf_hist[histndx(Yval/ovec[2])]; |
133 |
|
|
134 |
|
pos_from_vec(pos, ovec); |
135 |
|
|
136 |
< |
dsf_grid[pos[0]][pos[1]].vsum += val; |
137 |
< |
dsf_grid[pos[0]][pos[1]].nval++; |
136 |
> |
dsf_grid[pos[0]][pos[1]].sum.v += Yval; |
137 |
> |
dsf_grid[pos[0]][pos[1]].sum.n++; |
138 |
> |
/* add in X and Z values */ |
139 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
140 |
> |
spec_grid[0][pos[0]][pos[1]] += val[0]; |
141 |
> |
spec_grid[1][pos[0]][pos[1]] += val[2]; |
142 |
> |
} |
143 |
|
} |
144 |
|
|
145 |
|
/* Compute minimum BSDF from histogram (does not clear) */ |
146 |
|
static void |
147 |
|
comp_bsdf_min() |
148 |
|
{ |
149 |
< |
int cnt; |
150 |
< |
int i, target; |
149 |
> |
unsigned long cnt, target; |
150 |
> |
int i; |
151 |
|
|
152 |
|
cnt = 0; |
153 |
|
for (i = HISTLEN; i--; ) |
171 |
|
|
172 |
|
for (x = x0; x < x1; x++) |
173 |
|
for (y = y0; y < y1; y++) |
174 |
< |
if (dsf_grid[x][y].nval) |
174 |
> |
if (dsf_grid[x][y].sum.n) |
175 |
|
return(0); |
176 |
|
return(1); |
177 |
|
} |
189 |
|
memset(xvec, 0, sizeof(xvec)); |
190 |
|
for (x = x0; x < x1; x++) |
191 |
|
for (y = y0; y < y1; y++) |
192 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
193 |
< |
double z = dsf_grid[x][y].vsum; |
194 |
< |
rMtx[0][0] += n*x*x; |
195 |
< |
rMtx[0][1] += n*x*y; |
196 |
< |
rMtx[0][2] += n*x; |
197 |
< |
rMtx[1][1] += n*y*y; |
198 |
< |
rMtx[1][2] += n*y; |
199 |
< |
rMtx[2][2] += n; |
192 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
193 |
> |
double z = dsf_grid[x][y].sum.v; |
194 |
> |
rMtx[0][0] += x*x*(double)n; |
195 |
> |
rMtx[0][1] += x*y*(double)n; |
196 |
> |
rMtx[0][2] += x*(double)n; |
197 |
> |
rMtx[1][1] += y*y*(double)n; |
198 |
> |
rMtx[1][2] += y*(double)n; |
199 |
> |
rMtx[2][2] += (double)n; |
200 |
|
xvec[0] += x*z; |
201 |
|
xvec[1] += y*z; |
202 |
|
xvec[2] += z; |
203 |
|
} |
204 |
|
rMtx[1][0] = rMtx[0][1]; |
205 |
+ |
rMtx[2][0] = rMtx[0][2]; |
206 |
|
rMtx[2][1] = rMtx[1][2]; |
207 |
|
nvs = rMtx[2][2]; |
208 |
|
if (SDinvXform(rMtx, rMtx) != SDEnone) |
209 |
< |
return(0); |
209 |
> |
return(1); /* colinear values */ |
210 |
|
A = DOT(rMtx[0], xvec); |
211 |
|
B = DOT(rMtx[1], xvec); |
212 |
|
C = DOT(rMtx[2], xvec); |
213 |
|
sqerr = 0.0; /* compute mean squared error */ |
214 |
|
for (x = x0; x < x1; x++) |
215 |
|
for (y = y0; y < y1; y++) |
216 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
217 |
< |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
216 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
217 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
218 |
|
sqerr += n*d*d; |
219 |
|
} |
220 |
|
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
221 |
|
return(1); |
222 |
< |
/* below relative MSE threshold? */ |
222 |
> |
/* OR below relative MSE threshold? */ |
223 |
|
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER); |
224 |
|
} |
225 |
|
|
226 |
|
/* Create new lobe based on integrated samples in region */ |
227 |
< |
static void |
227 |
> |
static int |
228 |
|
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
229 |
|
{ |
230 |
|
double vtot = 0.0; |
231 |
+ |
double CIEXtot = 0.0, CIEZtot = 0.0; |
232 |
|
int nv = 0; |
233 |
+ |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
234 |
|
double rad; |
235 |
|
int x, y; |
236 |
|
/* compute average for region */ |
237 |
|
for (x = x0; x < x1; x++) |
238 |
< |
for (y = y0; y < y1; y++) { |
239 |
< |
vtot += dsf_grid[x][y].vsum; |
240 |
< |
nv += dsf_grid[x][y].nval; |
241 |
< |
} |
238 |
> |
for (y = y0; y < y1; y++) |
239 |
> |
if (dsf_grid[x][y].sum.n) { |
240 |
> |
const double v = dsf_grid[x][y].sum.v; |
241 |
> |
const int n = dsf_grid[x][y].sum.n; |
242 |
> |
|
243 |
> |
if (v > 0) { |
244 |
> |
const double wt = v / (double)n; |
245 |
> |
wxsum += wt * x; |
246 |
> |
wysum += wt * y; |
247 |
> |
wtsum += wt; |
248 |
> |
} |
249 |
> |
vtot += v; |
250 |
> |
nv += n; |
251 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
252 |
> |
CIEXtot += spec_grid[0][x][y]; |
253 |
> |
CIEZtot += spec_grid[1][x][y]; |
254 |
> |
} |
255 |
> |
} |
256 |
|
if (!nv) { |
257 |
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
258 |
|
progname); |
259 |
|
exit(1); |
260 |
|
} |
261 |
+ |
if (vtot <= 0) /* only create positive lobes */ |
262 |
+ |
return(0); |
263 |
+ |
/* assign color */ |
264 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
265 |
+ |
const double df = 1.0 / (CIEXtot + vtot + CIEZtot); |
266 |
+ |
C_COLOR cclr; |
267 |
+ |
c_cset(&cclr, CIEXtot*df, vtot*df); |
268 |
+ |
rvp->chroma = c_encodeChroma(&cclr); |
269 |
+ |
} else |
270 |
+ |
rvp->chroma = c_dfchroma; |
271 |
|
/* peak value based on integral */ |
272 |
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
273 |
|
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
274 |
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
275 |
< |
rvp->crad = ANG2R(rad); |
276 |
< |
rvp->gx = (x0+x1)>>1; |
277 |
< |
rvp->gy = (y0+y1)>>1; |
275 |
> |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
276 |
> |
rvp->gx = (int)(wxsum/wtsum + .5); |
277 |
> |
rvp->gy = (int)(wysum/wtsum + .5); |
278 |
> |
return(1); |
279 |
|
} |
280 |
|
|
281 |
|
/* Recursive function to build radial basis function representation */ |
306 |
|
if (!nleaves) /* nothing but branches? */ |
307 |
|
return(nadded); |
308 |
|
/* combine 4 leaves into 1? */ |
309 |
< |
if (nleaves == 4 && x1-x0 < MAX_RAD && smooth_region(x0, x1, y0, y1)) |
309 |
> |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) && |
310 |
> |
smooth_region(x0, x1, y0, y1)) |
311 |
|
return(0); |
312 |
|
/* need more array space? */ |
313 |
|
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) { |
317 |
|
return(-1); |
318 |
|
} |
319 |
|
/* create lobes for leaves */ |
320 |
< |
if (!branched[0]) |
321 |
< |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
322 |
< |
if (!branched[1]) |
323 |
< |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
324 |
< |
if (!branched[2]) |
325 |
< |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
326 |
< |
if (!branched[3]) |
327 |
< |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
328 |
< |
nadded += nleaves; |
320 |
> |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
321 |
> |
++(*np); ++nadded; |
322 |
> |
} |
323 |
> |
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
324 |
> |
++(*np); ++nadded; |
325 |
> |
} |
326 |
> |
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
327 |
> |
++(*np); ++nadded; |
328 |
> |
} |
329 |
> |
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
330 |
> |
++(*np); ++nadded; |
331 |
> |
} |
332 |
|
return(nadded); |
333 |
|
} |
334 |
|
|
343 |
|
comp_bsdf_min(); |
344 |
|
/* create RBF node list */ |
345 |
|
rbfarr = NULL; nn = 0; |
346 |
< |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
347 |
< |
goto memerr; |
346 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
347 |
> |
if (nn) |
348 |
> |
goto memerr; |
349 |
> |
fprintf(stderr, |
350 |
> |
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
351 |
> |
progname, theta_in_deg, phi_in_deg); |
352 |
> |
return(NULL); |
353 |
> |
} |
354 |
|
/* (re)allocate RBF array */ |
355 |
|
newnode = (RBFNODE *)realloc(rbfarr, |
356 |
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
377 |
|
newnode->vtotal); |
378 |
|
#endif |
379 |
|
insert_dsf(newnode); |
273 |
– |
|
380 |
|
return(newnode); |
381 |
|
memerr: |
382 |
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |