29 |
|
#include "bsdfrep.h" |
30 |
|
|
31 |
|
#ifndef RSCA |
32 |
< |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
32 |
> |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
33 |
|
#endif |
34 |
|
#ifndef SMOOTH_MSE |
35 |
|
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
41 |
|
|
42 |
|
#define RBFALLOCB 10 /* RBF allocation block size */ |
43 |
|
|
44 |
< |
/* our loaded grid for this incident angle */ |
44 |
> |
/* loaded grid or comparison DSFs */ |
45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
46 |
|
|
47 |
|
/* Start new DSF input grid */ |
72 |
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
73 |
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
74 |
|
|
75 |
< |
if (val <= 0) /* truncate to zero */ |
76 |
< |
val = 0; |
77 |
< |
else if (!isDSF) |
78 |
< |
val *= ovec[2]; /* convert from BSDF to DSF */ |
75 |
> |
if (!isDSF) |
76 |
> |
val *= COSF(ovec[2]); /* convert from BSDF to DSF */ |
77 |
|
|
78 |
|
/* update BSDF histogram */ |
79 |
|
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2]) |
81 |
|
|
82 |
|
pos_from_vec(pos, ovec); |
83 |
|
|
84 |
< |
dsf_grid[pos[0]][pos[1]].vsum += val; |
85 |
< |
dsf_grid[pos[0]][pos[1]].nval++; |
84 |
> |
dsf_grid[pos[0]][pos[1]].sum.v += val; |
85 |
> |
dsf_grid[pos[0]][pos[1]].sum.n++; |
86 |
|
} |
87 |
|
|
88 |
|
/* Compute minimum BSDF from histogram (does not clear) */ |
114 |
|
|
115 |
|
for (x = x0; x < x1; x++) |
116 |
|
for (y = y0; y < y1; y++) |
117 |
< |
if (dsf_grid[x][y].nval) |
117 |
> |
if (dsf_grid[x][y].sum.n) |
118 |
|
return(0); |
119 |
|
return(1); |
120 |
|
} |
132 |
|
memset(xvec, 0, sizeof(xvec)); |
133 |
|
for (x = x0; x < x1; x++) |
134 |
|
for (y = y0; y < y1; y++) |
135 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
136 |
< |
double z = dsf_grid[x][y].vsum; |
135 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
136 |
> |
double z = dsf_grid[x][y].sum.v; |
137 |
|
rMtx[0][0] += x*x*(double)n; |
138 |
|
rMtx[0][1] += x*y*(double)n; |
139 |
|
rMtx[0][2] += x*(double)n; |
156 |
|
sqerr = 0.0; /* compute mean squared error */ |
157 |
|
for (x = x0; x < x1; x++) |
158 |
|
for (y = y0; y < y1; y++) |
159 |
< |
if ((n = dsf_grid[x][y].nval) > 0) { |
160 |
< |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
159 |
> |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
160 |
> |
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
161 |
|
sqerr += n*d*d; |
162 |
|
} |
163 |
|
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
167 |
|
} |
168 |
|
|
169 |
|
/* Create new lobe based on integrated samples in region */ |
170 |
< |
static void |
170 |
> |
static int |
171 |
|
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
172 |
|
{ |
173 |
|
double vtot = 0.0; |
174 |
|
int nv = 0; |
175 |
+ |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
176 |
|
double rad; |
177 |
|
int x, y; |
178 |
|
/* compute average for region */ |
179 |
|
for (x = x0; x < x1; x++) |
180 |
< |
for (y = y0; y < y1; y++) { |
181 |
< |
vtot += dsf_grid[x][y].vsum; |
182 |
< |
nv += dsf_grid[x][y].nval; |
183 |
< |
} |
180 |
> |
for (y = y0; y < y1; y++) |
181 |
> |
if (dsf_grid[x][y].sum.n) { |
182 |
> |
const double v = dsf_grid[x][y].sum.v; |
183 |
> |
const int n = dsf_grid[x][y].sum.n; |
184 |
> |
|
185 |
> |
if (v > 0) { |
186 |
> |
double wt = v / (double)n; |
187 |
> |
wxsum += wt * x; |
188 |
> |
wysum += wt * y; |
189 |
> |
wtsum += wt; |
190 |
> |
} |
191 |
> |
vtot += v; |
192 |
> |
nv += n; |
193 |
> |
} |
194 |
|
if (!nv) { |
195 |
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
196 |
|
progname); |
197 |
|
exit(1); |
198 |
|
} |
199 |
+ |
if (vtot <= 0) /* only create positive lobes */ |
200 |
+ |
return(0); |
201 |
|
/* peak value based on integral */ |
202 |
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
203 |
|
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
204 |
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
205 |
< |
rvp->crad = ANG2R(rad); |
206 |
< |
rvp->gx = (x0+x1)>>1; |
207 |
< |
rvp->gy = (y0+y1)>>1; |
205 |
> |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
206 |
> |
rvp->gx = (int)(wxsum/wtsum + .5); |
207 |
> |
rvp->gy = (int)(wysum/wtsum + .5); |
208 |
> |
return(1); |
209 |
|
} |
210 |
|
|
211 |
|
/* Recursive function to build radial basis function representation */ |
247 |
|
return(-1); |
248 |
|
} |
249 |
|
/* create lobes for leaves */ |
250 |
< |
if (!branched[0]) |
251 |
< |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
252 |
< |
if (!branched[1]) |
253 |
< |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
254 |
< |
if (!branched[2]) |
255 |
< |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
256 |
< |
if (!branched[3]) |
257 |
< |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
258 |
< |
nadded += nleaves; |
250 |
> |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
251 |
> |
++(*np); ++nadded; |
252 |
> |
} |
253 |
> |
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
254 |
> |
++(*np); ++nadded; |
255 |
> |
} |
256 |
> |
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
257 |
> |
++(*np); ++nadded; |
258 |
> |
} |
259 |
> |
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
260 |
> |
++(*np); ++nadded; |
261 |
> |
} |
262 |
|
return(nadded); |
263 |
|
} |
264 |
|
|
273 |
|
comp_bsdf_min(); |
274 |
|
/* create RBF node list */ |
275 |
|
rbfarr = NULL; nn = 0; |
276 |
< |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
277 |
< |
goto memerr; |
276 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
277 |
> |
if (nn) |
278 |
> |
goto memerr; |
279 |
> |
fprintf(stderr, |
280 |
> |
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
281 |
> |
progname, theta_in_deg, phi_in_deg); |
282 |
> |
return(NULL); |
283 |
> |
} |
284 |
|
/* (re)allocate RBF array */ |
285 |
|
newnode = (RBFNODE *)realloc(rbfarr, |
286 |
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
307 |
|
newnode->vtotal); |
308 |
|
#endif |
309 |
|
insert_dsf(newnode); |
289 |
– |
|
310 |
|
return(newnode); |
311 |
|
memerr: |
312 |
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |