7 |
|
* G. Ward |
8 |
|
*/ |
9 |
|
|
10 |
+ |
/**************************************************************** |
11 |
+ |
1) Collect samples into a grid using the Shirley-Chiu |
12 |
+ |
angular mapping from a hemisphere to a square. |
13 |
+ |
|
14 |
+ |
2) Compute an adaptive quadtree by subdividing the grid so that |
15 |
+ |
each leaf node has at least one sample up to as many |
16 |
+ |
samples as fit nicely on a plane to within a certain |
17 |
+ |
MSE tolerance. |
18 |
+ |
|
19 |
+ |
3) Place one Gaussian lobe at each leaf node in the quadtree, |
20 |
+ |
sizing it to have a radius equal to the leaf size and |
21 |
+ |
a volume equal to the energy in that node. |
22 |
+ |
*****************************************************************/ |
23 |
+ |
|
24 |
|
#define _USE_MATH_DEFINES |
25 |
|
#include <stdio.h> |
26 |
|
#include <stdlib.h> |
28 |
|
#include <math.h> |
29 |
|
#include "bsdfrep.h" |
30 |
|
|
31 |
< |
#ifndef MINRSCA |
32 |
< |
#define MINRSCA 1.0 /* minimum radius scaling factor */ |
31 |
> |
#ifndef RSCA |
32 |
> |
#define RSCA 2.2 /* radius scaling factor (empirical) */ |
33 |
|
#endif |
34 |
< |
#ifndef MAXRSCA |
35 |
< |
#define MAXRSCA 2.7 /* maximum radius scaling factor */ |
34 |
> |
#ifndef SMOOTH_MSE |
35 |
> |
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
36 |
|
#endif |
37 |
< |
#ifndef VARTHRESH |
38 |
< |
#define VARTHRESH 0.0015 /* culling variance threshold */ |
37 |
> |
#ifndef SMOOTH_MSER |
38 |
> |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
39 |
|
#endif |
40 |
< |
#ifndef DIFFMAX2 |
41 |
< |
#define DIFFMAX2 (16.*VARTHRESH) /* maximum ignored sample variance */ |
42 |
< |
#endif |
43 |
< |
#ifndef MAXFRAC |
30 |
< |
#define MAXFRAC 0.5 /* maximum contribution to neighbor */ |
31 |
< |
#endif |
32 |
< |
#ifndef NNEIGH |
33 |
< |
#define NNEIGH 10 /* number of neighbors to consider */ |
34 |
< |
#endif |
40 |
> |
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
41 |
> |
|
42 |
> |
#define RBFALLOCB 10 /* RBF allocation block size */ |
43 |
> |
|
44 |
|
/* our loaded grid for this incident angle */ |
45 |
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
46 |
|
|
87 |
|
dsf_grid[pos[0]][pos[1]].nval++; |
88 |
|
} |
89 |
|
|
81 |
– |
/* Compute radii for non-empty bins */ |
82 |
– |
/* (distance to furthest empty bin for which non-empty test bin is closest) */ |
83 |
– |
static void |
84 |
– |
compute_radii(void) |
85 |
– |
{ |
86 |
– |
const int cradmin = ANG2R(.5*M_PI/GRIDRES); |
87 |
– |
unsigned int fill_grid[GRIDRES][GRIDRES]; |
88 |
– |
unsigned short fill_cnt[GRIDRES][GRIDRES]; |
89 |
– |
FVECT ovec0, ovec1; |
90 |
– |
double ang2, lastang2; |
91 |
– |
int r, i, j, jn, ii, jj, inear, jnear; |
92 |
– |
|
93 |
– |
r = GRIDRES/2; /* proceed in zig-zag */ |
94 |
– |
for (i = 0; i < GRIDRES; i++) |
95 |
– |
for (jn = 0; jn < GRIDRES; jn++) { |
96 |
– |
j = (i&1) ? jn : GRIDRES-1-jn; |
97 |
– |
if (dsf_grid[i][j].nval) /* find empty grid pos. */ |
98 |
– |
continue; |
99 |
– |
ovec_from_pos(ovec0, i, j); |
100 |
– |
inear = jnear = -1; /* find nearest non-empty */ |
101 |
– |
lastang2 = M_PI*M_PI; |
102 |
– |
for (ii = i-r; ii <= i+r; ii++) { |
103 |
– |
if (ii < 0) continue; |
104 |
– |
if (ii >= GRIDRES) break; |
105 |
– |
for (jj = j-r; jj <= j+r; jj++) { |
106 |
– |
if (jj < 0) continue; |
107 |
– |
if (jj >= GRIDRES) break; |
108 |
– |
if (!dsf_grid[ii][jj].nval) |
109 |
– |
continue; |
110 |
– |
ovec_from_pos(ovec1, ii, jj); |
111 |
– |
ang2 = 2. - 2.*DOT(ovec0,ovec1); |
112 |
– |
if (ang2 >= lastang2) |
113 |
– |
continue; |
114 |
– |
lastang2 = ang2; |
115 |
– |
inear = ii; jnear = jj; |
116 |
– |
} |
117 |
– |
} |
118 |
– |
if (inear < 0) { |
119 |
– |
fprintf(stderr, |
120 |
– |
"%s: Could not find non-empty neighbor!\n", |
121 |
– |
progname); |
122 |
– |
exit(1); |
123 |
– |
} |
124 |
– |
ang2 = sqrt(lastang2); |
125 |
– |
r = ANG2R(ang2); /* record if > previous */ |
126 |
– |
if (r > dsf_grid[inear][jnear].crad) |
127 |
– |
dsf_grid[inear][jnear].crad = r; |
128 |
– |
/* next search radius */ |
129 |
– |
r = ang2*(2.*GRIDRES/M_PI) + 3; |
130 |
– |
} |
131 |
– |
for (i = 0; i < GRIDRES; i++) /* grow radii where uniform */ |
132 |
– |
for (j = 0; j < GRIDRES; j++) { |
133 |
– |
double midmean = 0.0; |
134 |
– |
int nsum = 0; |
135 |
– |
if (!dsf_grid[i][j].nval) |
136 |
– |
continue; |
137 |
– |
r = 1; /* avg. immediate neighbors */ |
138 |
– |
for (ii = i-r; ii <= i+r; ii++) { |
139 |
– |
if (ii < 0) continue; |
140 |
– |
if (ii >= GRIDRES) break; |
141 |
– |
for (jj = j-r; jj <= j+r; jj++) { |
142 |
– |
if (jj < 0) continue; |
143 |
– |
if (jj >= GRIDRES) break; |
144 |
– |
midmean += dsf_grid[ii][jj].vsum; |
145 |
– |
nsum += dsf_grid[ii][jj].nval; |
146 |
– |
} |
147 |
– |
} |
148 |
– |
midmean /= (double)nsum; |
149 |
– |
while (++r < GRIDRES) { /* attempt to grow perimeter */ |
150 |
– |
double diff2sum = 0.0; |
151 |
– |
nsum = 0; |
152 |
– |
for (ii = i-r; ii <= i+r; ii++) { |
153 |
– |
int jstep = 1; |
154 |
– |
if (ii < 0) continue; |
155 |
– |
if (ii >= GRIDRES) break; |
156 |
– |
if ((i-r < ii) & (ii < i+r)) |
157 |
– |
jstep = r<<1; |
158 |
– |
for (jj = j-r; jj <= j+r; jj += jstep) { |
159 |
– |
double d2; |
160 |
– |
if (jj < 0) continue; |
161 |
– |
if (jj >= GRIDRES) break; |
162 |
– |
if (!dsf_grid[ii][jj].nval) |
163 |
– |
continue; |
164 |
– |
d2 = midmean - dsf_grid[ii][jj].vsum / |
165 |
– |
(double)dsf_grid[ii][jj].nval; |
166 |
– |
d2 *= d2; |
167 |
– |
if (d2 > DIFFMAX2*midmean*midmean) |
168 |
– |
goto escape; |
169 |
– |
diff2sum += d2; |
170 |
– |
++nsum; |
171 |
– |
} |
172 |
– |
} |
173 |
– |
if (diff2sum > VARTHRESH*midmean*midmean*(double)nsum) |
174 |
– |
break; |
175 |
– |
} |
176 |
– |
escape: --r; |
177 |
– |
r = ANG2R(r*(M_PI/MAXRSCA/GRIDRES)); |
178 |
– |
if (r < cradmin) |
179 |
– |
r = cradmin; |
180 |
– |
if (dsf_grid[i][j].crad < r) |
181 |
– |
dsf_grid[i][j].crad = r; |
182 |
– |
} |
183 |
– |
/* blur radii over hemisphere */ |
184 |
– |
memset(fill_grid, 0, sizeof(fill_grid)); |
185 |
– |
memset(fill_cnt, 0, sizeof(fill_cnt)); |
186 |
– |
for (i = 0; i < GRIDRES; i++) |
187 |
– |
for (j = 0; j < GRIDRES; j++) { |
188 |
– |
if (!dsf_grid[i][j].nval) |
189 |
– |
continue; /* not part of this */ |
190 |
– |
r = R2ANG(dsf_grid[i][j].crad)*(2.*MAXRSCA*GRIDRES/M_PI); |
191 |
– |
for (ii = i-r; ii <= i+r; ii++) { |
192 |
– |
if (ii < 0) continue; |
193 |
– |
if (ii >= GRIDRES) break; |
194 |
– |
for (jj = j-r; jj <= j+r; jj++) { |
195 |
– |
if (jj < 0) continue; |
196 |
– |
if (jj >= GRIDRES) break; |
197 |
– |
if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r) |
198 |
– |
continue; |
199 |
– |
fill_grid[ii][jj] += dsf_grid[i][j].crad; |
200 |
– |
fill_cnt[ii][jj]++; |
201 |
– |
} |
202 |
– |
} |
203 |
– |
} |
204 |
– |
/* copy back blurred radii */ |
205 |
– |
for (i = 0; i < GRIDRES; i++) |
206 |
– |
for (j = 0; j < GRIDRES; j++) |
207 |
– |
if (fill_cnt[i][j]) |
208 |
– |
dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j]; |
209 |
– |
} |
210 |
– |
|
211 |
– |
/* Radius comparison for qsort() */ |
212 |
– |
static int |
213 |
– |
radius_cmp(const void *p1, const void *p2) |
214 |
– |
{ |
215 |
– |
return( (int)dsf_grid[0][*(const int *)p1].crad - |
216 |
– |
(int)dsf_grid[0][*(const int *)p2].crad ); |
217 |
– |
} |
218 |
– |
|
219 |
– |
/* Cull points for more uniform distribution, leave all nval 0 or 1 */ |
220 |
– |
static void |
221 |
– |
cull_values(void) |
222 |
– |
{ |
223 |
– |
int indx[GRIDRES*GRIDRES]; |
224 |
– |
FVECT ovec0, ovec1; |
225 |
– |
double maxang, maxang2; |
226 |
– |
int i, j, k, ii, jj, r; |
227 |
– |
/* sort by radius first */ |
228 |
– |
for (k = GRIDRES*GRIDRES; k--; ) |
229 |
– |
indx[k] = k; |
230 |
– |
qsort(indx, GRIDRES*GRIDRES, sizeof(int), &radius_cmp); |
231 |
– |
/* simple greedy algorithm */ |
232 |
– |
for (k = GRIDRES*GRIDRES; k--; ) { |
233 |
– |
i = indx[k]/GRIDRES; /* from biggest radius down */ |
234 |
– |
j = indx[k] - i*GRIDRES; |
235 |
– |
if (!dsf_grid[i][j].nval) |
236 |
– |
continue; |
237 |
– |
if (!dsf_grid[i][j].crad) |
238 |
– |
break; /* shouldn't happen */ |
239 |
– |
ovec_from_pos(ovec0, i, j); |
240 |
– |
maxang = 2.*R2ANG(dsf_grid[i][j].crad); |
241 |
– |
/* clamp near horizon */ |
242 |
– |
if (maxang > output_orient*ovec0[2]) |
243 |
– |
maxang = output_orient*ovec0[2]; |
244 |
– |
r = maxang*(2.*GRIDRES/M_PI) + 1; |
245 |
– |
maxang2 = maxang*maxang; |
246 |
– |
for (ii = i-r; ii <= i+r; ii++) { |
247 |
– |
if (ii < 0) continue; |
248 |
– |
if (ii >= GRIDRES) break; |
249 |
– |
for (jj = j-r; jj <= j+r; jj++) { |
250 |
– |
if ((ii == i) & (jj == j)) |
251 |
– |
continue; /* don't get self-absorbed */ |
252 |
– |
if (jj < 0) continue; |
253 |
– |
if (jj >= GRIDRES) break; |
254 |
– |
if (!dsf_grid[ii][jj].nval) |
255 |
– |
continue; |
256 |
– |
ovec_from_pos(ovec1, ii, jj); |
257 |
– |
if (2. - 2.*DOT(ovec0,ovec1) >= maxang2) |
258 |
– |
continue; |
259 |
– |
/* absorb sum */ |
260 |
– |
dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum; |
261 |
– |
dsf_grid[i][j].nval += dsf_grid[ii][jj].nval; |
262 |
– |
/* keep value, though */ |
263 |
– |
dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval; |
264 |
– |
dsf_grid[ii][jj].nval = 0; |
265 |
– |
} |
266 |
– |
} |
267 |
– |
} |
268 |
– |
/* final averaging pass */ |
269 |
– |
for (i = 0; i < GRIDRES; i++) |
270 |
– |
for (j = 0; j < GRIDRES; j++) |
271 |
– |
if (dsf_grid[i][j].nval > 1) { |
272 |
– |
dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval; |
273 |
– |
dsf_grid[i][j].nval = 1; |
274 |
– |
} |
275 |
– |
} |
276 |
– |
|
90 |
|
/* Compute minimum BSDF from histogram (does not clear) */ |
91 |
|
static void |
92 |
|
comp_bsdf_min() |
93 |
|
{ |
94 |
< |
int cnt; |
95 |
< |
int i, target; |
94 |
> |
unsigned long cnt, target; |
95 |
> |
int i; |
96 |
|
|
97 |
|
cnt = 0; |
98 |
|
for (i = HISTLEN; i--; ) |
108 |
|
bsdf_min = histval(i-1); |
109 |
|
} |
110 |
|
|
111 |
< |
/* Find n nearest sub-sampled neighbors to the given grid position */ |
111 |
> |
/* Determine if the given region is empty of grid samples */ |
112 |
|
static int |
113 |
< |
get_neighbors(int neigh[][2], int n, const int i, const int j) |
113 |
> |
empty_region(int x0, int x1, int y0, int y1) |
114 |
|
{ |
115 |
< |
int k = 0; |
116 |
< |
int r; |
117 |
< |
/* search concentric squares */ |
118 |
< |
for (r = 1; r < GRIDRES; r++) { |
119 |
< |
int ii, jj; |
120 |
< |
for (ii = i-r; ii <= i+r; ii++) { |
121 |
< |
int jstep = 1; |
122 |
< |
if (ii < 0) continue; |
123 |
< |
if (ii >= GRIDRES) break; |
124 |
< |
if ((i-r < ii) & (ii < i+r)) |
125 |
< |
jstep = r<<1; |
126 |
< |
for (jj = j-r; jj <= j+r; jj += jstep) { |
127 |
< |
if (jj < 0) continue; |
128 |
< |
if (jj >= GRIDRES) break; |
129 |
< |
if (dsf_grid[ii][jj].nval) { |
130 |
< |
neigh[k][0] = ii; |
131 |
< |
neigh[k][1] = jj; |
132 |
< |
if (++k >= n) |
133 |
< |
return(n); |
134 |
< |
} |
135 |
< |
} |
115 |
> |
int x, y; |
116 |
> |
|
117 |
> |
for (x = x0; x < x1; x++) |
118 |
> |
for (y = y0; y < y1; y++) |
119 |
> |
if (dsf_grid[x][y].nval) |
120 |
> |
return(0); |
121 |
> |
return(1); |
122 |
> |
} |
123 |
> |
|
124 |
> |
/* Determine if the given region is smooth enough to be a single lobe */ |
125 |
> |
static int |
126 |
> |
smooth_region(int x0, int x1, int y0, int y1) |
127 |
> |
{ |
128 |
> |
RREAL rMtx[3][3]; |
129 |
> |
FVECT xvec; |
130 |
> |
double A, B, C, nvs, sqerr; |
131 |
> |
int x, y, n; |
132 |
> |
/* compute planar regression */ |
133 |
> |
memset(rMtx, 0, sizeof(rMtx)); |
134 |
> |
memset(xvec, 0, sizeof(xvec)); |
135 |
> |
for (x = x0; x < x1; x++) |
136 |
> |
for (y = y0; y < y1; y++) |
137 |
> |
if ((n = dsf_grid[x][y].nval) > 0) { |
138 |
> |
double z = dsf_grid[x][y].vsum; |
139 |
> |
rMtx[0][0] += x*x*(double)n; |
140 |
> |
rMtx[0][1] += x*y*(double)n; |
141 |
> |
rMtx[0][2] += x*(double)n; |
142 |
> |
rMtx[1][1] += y*y*(double)n; |
143 |
> |
rMtx[1][2] += y*(double)n; |
144 |
> |
rMtx[2][2] += (double)n; |
145 |
> |
xvec[0] += x*z; |
146 |
> |
xvec[1] += y*z; |
147 |
> |
xvec[2] += z; |
148 |
|
} |
149 |
+ |
rMtx[1][0] = rMtx[0][1]; |
150 |
+ |
rMtx[2][0] = rMtx[0][2]; |
151 |
+ |
rMtx[2][1] = rMtx[1][2]; |
152 |
+ |
nvs = rMtx[2][2]; |
153 |
+ |
if (SDinvXform(rMtx, rMtx) != SDEnone) |
154 |
+ |
return(1); /* colinear values */ |
155 |
+ |
A = DOT(rMtx[0], xvec); |
156 |
+ |
B = DOT(rMtx[1], xvec); |
157 |
+ |
C = DOT(rMtx[2], xvec); |
158 |
+ |
sqerr = 0.0; /* compute mean squared error */ |
159 |
+ |
for (x = x0; x < x1; x++) |
160 |
+ |
for (y = y0; y < y1; y++) |
161 |
+ |
if ((n = dsf_grid[x][y].nval) > 0) { |
162 |
+ |
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n; |
163 |
+ |
sqerr += n*d*d; |
164 |
+ |
} |
165 |
+ |
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
166 |
+ |
return(1); |
167 |
+ |
/* OR below relative MSE threshold? */ |
168 |
+ |
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER); |
169 |
+ |
} |
170 |
+ |
|
171 |
+ |
/* Create new lobe based on integrated samples in region */ |
172 |
+ |
static void |
173 |
+ |
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
174 |
+ |
{ |
175 |
+ |
double vtot = 0.0; |
176 |
+ |
int nv = 0; |
177 |
+ |
double rad; |
178 |
+ |
int x, y; |
179 |
+ |
/* compute average for region */ |
180 |
+ |
for (x = x0; x < x1; x++) |
181 |
+ |
for (y = y0; y < y1; y++) { |
182 |
+ |
vtot += dsf_grid[x][y].vsum; |
183 |
+ |
nv += dsf_grid[x][y].nval; |
184 |
+ |
} |
185 |
+ |
if (!nv) { |
186 |
+ |
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
187 |
+ |
progname); |
188 |
+ |
exit(1); |
189 |
|
} |
190 |
< |
return(k); |
190 |
> |
/* peak value based on integral */ |
191 |
> |
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
192 |
> |
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
193 |
> |
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
194 |
> |
rvp->crad = ANG2R(rad); |
195 |
> |
rvp->gx = (x0+x1)>>1; |
196 |
> |
rvp->gy = (y0+y1)>>1; |
197 |
|
} |
198 |
|
|
199 |
< |
/* Adjust coded radius for the given grid position based on neighborhood */ |
199 |
> |
/* Recursive function to build radial basis function representation */ |
200 |
|
static int |
201 |
< |
adj_coded_radius(const int i, const int j) |
201 |
> |
build_rbfrep(RBFVAL **arp, int *np, int x0, int x1, int y0, int y1) |
202 |
|
{ |
203 |
< |
const double rad0 = R2ANG(dsf_grid[i][j].crad); |
204 |
< |
const double minrad = MINRSCA * rad0; |
205 |
< |
double currad = MAXRSCA * rad0; |
206 |
< |
int neigh[NNEIGH][2]; |
207 |
< |
int n; |
208 |
< |
FVECT our_dir; |
209 |
< |
|
210 |
< |
ovec_from_pos(our_dir, i, j); |
211 |
< |
n = get_neighbors(neigh, NNEIGH, i, j); |
212 |
< |
while (n--) { |
213 |
< |
FVECT their_dir; |
214 |
< |
double max_ratio, rad_ok2; |
215 |
< |
/* check our value at neighbor */ |
216 |
< |
ovec_from_pos(their_dir, neigh[n][0], neigh[n][1]); |
217 |
< |
max_ratio = MAXFRAC * dsf_grid[neigh[n][0]][neigh[n][1]].vsum |
218 |
< |
/ dsf_grid[i][j].vsum; |
219 |
< |
if (max_ratio >= 1) |
220 |
< |
continue; |
221 |
< |
rad_ok2 = (DOT(their_dir,our_dir) - 1.)/log(max_ratio); |
222 |
< |
if (rad_ok2 >= currad*currad) |
223 |
< |
continue; /* value fraction OK */ |
224 |
< |
currad = sqrt(rad_ok2); /* else reduce lobe radius */ |
225 |
< |
if (currad <= minrad) /* limit how small we'll go */ |
226 |
< |
return(ANG2R(minrad)); |
203 |
> |
int xmid = (x0+x1)>>1; |
204 |
> |
int ymid = (y0+y1)>>1; |
205 |
> |
int branched[4]; |
206 |
> |
int nadded, nleaves; |
207 |
> |
/* need to make this a leaf? */ |
208 |
> |
if (empty_region(x0, xmid, y0, ymid) || |
209 |
> |
empty_region(xmid, x1, y0, ymid) || |
210 |
> |
empty_region(x0, xmid, ymid, y1) || |
211 |
> |
empty_region(xmid, x1, ymid, y1)) |
212 |
> |
return(0); |
213 |
> |
/* add children (branches+leaves) */ |
214 |
> |
if ((branched[0] = build_rbfrep(arp, np, x0, xmid, y0, ymid)) < 0) |
215 |
> |
return(-1); |
216 |
> |
if ((branched[1] = build_rbfrep(arp, np, xmid, x1, y0, ymid)) < 0) |
217 |
> |
return(-1); |
218 |
> |
if ((branched[2] = build_rbfrep(arp, np, x0, xmid, ymid, y1)) < 0) |
219 |
> |
return(-1); |
220 |
> |
if ((branched[3] = build_rbfrep(arp, np, xmid, x1, ymid, y1)) < 0) |
221 |
> |
return(-1); |
222 |
> |
nadded = branched[0] + branched[1] + branched[2] + branched[3]; |
223 |
> |
nleaves = !branched[0] + !branched[1] + !branched[2] + !branched[3]; |
224 |
> |
if (!nleaves) /* nothing but branches? */ |
225 |
> |
return(nadded); |
226 |
> |
/* combine 4 leaves into 1? */ |
227 |
> |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) && |
228 |
> |
smooth_region(x0, x1, y0, y1)) |
229 |
> |
return(0); |
230 |
> |
/* need more array space? */ |
231 |
> |
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) { |
232 |
> |
*arp = (RBFVAL *)realloc(*arp, |
233 |
> |
sizeof(RBFVAL)*(*np+nleaves-1+(1<<RBFALLOCB))); |
234 |
> |
if (*arp == NULL) |
235 |
> |
return(-1); |
236 |
|
} |
237 |
< |
return(ANG2R(currad)); /* encode selected radius */ |
237 |
> |
/* create lobes for leaves */ |
238 |
> |
if (!branched[0]) |
239 |
> |
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid); |
240 |
> |
if (!branched[1]) |
241 |
> |
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid); |
242 |
> |
if (!branched[2]) |
243 |
> |
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1); |
244 |
> |
if (!branched[3]) |
245 |
> |
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1); |
246 |
> |
nadded += nleaves; |
247 |
> |
return(nadded); |
248 |
|
} |
249 |
|
|
250 |
|
/* Count up filled nodes and build RBF representation from current grid */ |
251 |
|
RBFNODE * |
252 |
< |
make_rbfrep(void) |
252 |
> |
make_rbfrep() |
253 |
|
{ |
364 |
– |
long cradsum = 0, ocradsum = 0; |
365 |
– |
int niter = 16; |
366 |
– |
double lastVar, thisVar = 100.; |
367 |
– |
int nn; |
254 |
|
RBFNODE *newnode; |
255 |
< |
RBFVAL *itera; |
256 |
< |
int i, j; |
371 |
< |
|
372 |
< |
#ifdef DEBUG |
373 |
< |
{ |
374 |
< |
int maxcnt = 0, nempty = 0; |
375 |
< |
long cntsum = 0; |
376 |
< |
for (i = 0; i < GRIDRES; i++) |
377 |
< |
for (j = 0; j < GRIDRES; j++) |
378 |
< |
if (!dsf_grid[i][j].nval) { |
379 |
< |
++nempty; |
380 |
< |
} else { |
381 |
< |
if (dsf_grid[i][j].nval > maxcnt) |
382 |
< |
maxcnt = dsf_grid[i][j].nval; |
383 |
< |
cntsum += dsf_grid[i][j].nval; |
384 |
< |
} |
385 |
< |
fprintf(stderr, "Average, maximum bin count: %d, %d (%.1f%% empty)\n", |
386 |
< |
(int)(cntsum/((GRIDRES*GRIDRES)-nempty)), maxcnt, |
387 |
< |
100./(GRIDRES*GRIDRES)*nempty); |
388 |
< |
} |
389 |
< |
#endif |
390 |
< |
/* compute RBF radii */ |
391 |
< |
compute_radii(); |
392 |
< |
/* coagulate lobes */ |
393 |
< |
cull_values(); |
394 |
< |
nn = 0; /* count selected bins */ |
395 |
< |
for (i = 0; i < GRIDRES; i++) |
396 |
< |
for (j = 0; j < GRIDRES; j++) |
397 |
< |
nn += dsf_grid[i][j].nval; |
255 |
> |
RBFVAL *rbfarr; |
256 |
> |
int nn; |
257 |
|
/* compute minimum BSDF */ |
258 |
|
comp_bsdf_min(); |
259 |
< |
/* allocate RBF array */ |
260 |
< |
newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
259 |
> |
/* create RBF node list */ |
260 |
> |
rbfarr = NULL; nn = 0; |
261 |
> |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) |
262 |
> |
goto memerr; |
263 |
> |
/* (re)allocate RBF array */ |
264 |
> |
newnode = (RBFNODE *)realloc(rbfarr, |
265 |
> |
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
266 |
|
if (newnode == NULL) |
267 |
|
goto memerr; |
268 |
+ |
/* copy computed lobes into RBF node */ |
269 |
+ |
memmove(newnode->rbfa, newnode, sizeof(RBFVAL)*nn); |
270 |
|
newnode->ord = -1; |
271 |
|
newnode->next = NULL; |
272 |
|
newnode->ejl = NULL; |
274 |
|
newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
275 |
|
newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
276 |
|
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]); |
277 |
< |
newnode->vtotal = 0; |
277 |
> |
newnode->vtotal = .0; |
278 |
|
newnode->nrbf = nn; |
279 |
< |
nn = 0; /* fill RBF array */ |
280 |
< |
for (i = 0; i < GRIDRES; i++) |
281 |
< |
for (j = 0; j < GRIDRES; j++) |
416 |
< |
if (dsf_grid[i][j].nval) { |
417 |
< |
newnode->rbfa[nn].peak = dsf_grid[i][j].vsum; |
418 |
< |
ocradsum += dsf_grid[i][j].crad; |
419 |
< |
cradsum += |
420 |
< |
newnode->rbfa[nn].crad = adj_coded_radius(i, j); |
421 |
< |
newnode->rbfa[nn].gx = i; |
422 |
< |
newnode->rbfa[nn].gy = j; |
423 |
< |
++nn; |
424 |
< |
} |
279 |
> |
/* compute sum for normalization */ |
280 |
> |
while (nn-- > 0) |
281 |
> |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn]); |
282 |
|
#ifdef DEBUG |
283 |
< |
fprintf(stderr, |
427 |
< |
"Average radius reduced from %.2f to %.2f degrees for %d lobes\n", |
428 |
< |
180./M_PI*MAXRSCA*R2ANG(ocradsum/newnode->nrbf), |
429 |
< |
180./M_PI*R2ANG(cradsum/newnode->nrbf), newnode->nrbf); |
430 |
< |
#endif |
431 |
< |
/* iterate to improve interpolation accuracy */ |
432 |
< |
itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf); |
433 |
< |
if (itera == NULL) |
434 |
< |
goto memerr; |
435 |
< |
memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf); |
436 |
< |
do { |
437 |
< |
double dsum = 0, dsum2 = 0; |
438 |
< |
nn = 0; |
439 |
< |
for (i = 0; i < GRIDRES; i++) |
440 |
< |
for (j = 0; j < GRIDRES; j++) |
441 |
< |
if (dsf_grid[i][j].nval) { |
442 |
< |
FVECT odir; |
443 |
< |
double corr; |
444 |
< |
ovec_from_pos(odir, i, j); |
445 |
< |
itera[nn++].peak *= corr = |
446 |
< |
dsf_grid[i][j].vsum / |
447 |
< |
eval_rbfrep(newnode, odir); |
448 |
< |
dsum += 1. - corr; |
449 |
< |
dsum2 += (1.-corr)*(1.-corr); |
450 |
< |
} |
451 |
< |
memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf); |
452 |
< |
lastVar = thisVar; |
453 |
< |
thisVar = dsum2/(double)nn; |
454 |
< |
#ifdef DEBUG |
455 |
< |
fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n", |
456 |
< |
100.*dsum/(double)nn, |
457 |
< |
100.*sqrt(thisVar)); |
458 |
< |
#endif |
459 |
< |
} while (--niter > 0 && lastVar-thisVar > 0.02*lastVar); |
460 |
< |
|
461 |
< |
free(itera); |
462 |
< |
nn = 0; /* compute sum for normalization */ |
463 |
< |
while (nn < newnode->nrbf) |
464 |
< |
newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]); |
465 |
< |
#ifdef DEBUG |
283 |
> |
fprintf(stderr, "Built RBF with %d lobes\n", newnode->nrbf); |
284 |
|
fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n", |
285 |
|
get_theta180(newnode->invec), get_phi360(newnode->invec), |
286 |
|
newnode->vtotal); |