ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfrbf.c
Revision: 2.7
Committed: Wed Sep 25 17:42:45 2013 UTC (10 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +10 -5 lines
Log Message:
Adjusted maximum fraction for neighbor contribution upwards a bit

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.7 static const char RCSid[] = "$Id: bsdfrbf.c,v 2.6 2013/09/25 05:03:10 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Radial basis function representation for BSDF data.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdio.h>
12     #include <stdlib.h>
13     #include <string.h>
14     #include <math.h>
15     #include "bsdfrep.h"
16    
17     #ifndef RSCA
18     #define RSCA 2.7 /* radius scaling factor (empirical) */
19     #endif
20 greg 2.7 #ifndef MAXFRAC
21     #define MAXFRAC 0.5 /* maximum contribution to neighbor */
22     #endif
23     #ifndef NNEIGH
24     #define NNEIGH 10 /* number of neighbors to consider */
25     #endif
26 greg 2.1 /* our loaded grid for this incident angle */
27     GRIDVAL dsf_grid[GRIDRES][GRIDRES];
28    
29     /* Start new DSF input grid */
30     void
31     new_bsdf_data(double new_theta, double new_phi)
32     {
33     if (!new_input_direction(new_theta, new_phi))
34     exit(1);
35     memset(dsf_grid, 0, sizeof(dsf_grid));
36     }
37    
38     /* Add BSDF data point */
39     void
40     add_bsdf_data(double theta_out, double phi_out, double val, int isDSF)
41     {
42     FVECT ovec;
43     int pos[2];
44    
45     if (!output_orient) /* check output orientation */
46     output_orient = 1 - 2*(theta_out > 90.);
47     else if (output_orient > 0 ^ theta_out < 90.) {
48     fputs("Cannot handle output angles on both sides of surface\n",
49     stderr);
50     exit(1);
51     }
52     ovec[2] = sin((M_PI/180.)*theta_out);
53     ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2];
54     ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2];
55     ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
56    
57     if (!isDSF)
58     val *= ovec[2]; /* convert from BSDF to DSF */
59    
60 greg 2.4 /* update BSDF histogram */
61     if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2])
62     ++bsdf_hist[histndx(val/ovec[2])];
63    
64 greg 2.1 pos_from_vec(pos, ovec);
65    
66     dsf_grid[pos[0]][pos[1]].vsum += val;
67     dsf_grid[pos[0]][pos[1]].nval++;
68     }
69    
70     /* Compute radii for non-empty bins */
71     /* (distance to furthest empty bin for which non-empty bin is the closest) */
72     static void
73     compute_radii(void)
74     {
75     unsigned int fill_grid[GRIDRES][GRIDRES];
76     unsigned short fill_cnt[GRIDRES][GRIDRES];
77     FVECT ovec0, ovec1;
78     double ang2, lastang2;
79     int r, i, j, jn, ii, jj, inear, jnear;
80    
81     r = GRIDRES/2; /* proceed in zig-zag */
82     for (i = 0; i < GRIDRES; i++)
83     for (jn = 0; jn < GRIDRES; jn++) {
84     j = (i&1) ? jn : GRIDRES-1-jn;
85     if (dsf_grid[i][j].nval) /* find empty grid pos. */
86     continue;
87     ovec_from_pos(ovec0, i, j);
88     inear = jnear = -1; /* find nearest non-empty */
89     lastang2 = M_PI*M_PI;
90     for (ii = i-r; ii <= i+r; ii++) {
91     if (ii < 0) continue;
92     if (ii >= GRIDRES) break;
93     for (jj = j-r; jj <= j+r; jj++) {
94     if (jj < 0) continue;
95     if (jj >= GRIDRES) break;
96     if (!dsf_grid[ii][jj].nval)
97     continue;
98     ovec_from_pos(ovec1, ii, jj);
99     ang2 = 2. - 2.*DOT(ovec0,ovec1);
100     if (ang2 >= lastang2)
101     continue;
102     lastang2 = ang2;
103     inear = ii; jnear = jj;
104     }
105     }
106     if (inear < 0) {
107     fprintf(stderr,
108     "%s: Could not find non-empty neighbor!\n",
109     progname);
110     exit(1);
111     }
112     ang2 = sqrt(lastang2);
113     r = ANG2R(ang2); /* record if > previous */
114     if (r > dsf_grid[inear][jnear].crad)
115     dsf_grid[inear][jnear].crad = r;
116     /* next search radius */
117     r = ang2*(2.*GRIDRES/M_PI) + 3;
118     }
119     /* blur radii over hemisphere */
120     memset(fill_grid, 0, sizeof(fill_grid));
121     memset(fill_cnt, 0, sizeof(fill_cnt));
122     for (i = 0; i < GRIDRES; i++)
123     for (j = 0; j < GRIDRES; j++) {
124     if (!dsf_grid[i][j].crad)
125     continue; /* missing distance */
126     r = R2ANG(dsf_grid[i][j].crad)*(2.*RSCA*GRIDRES/M_PI);
127     for (ii = i-r; ii <= i+r; ii++) {
128     if (ii < 0) continue;
129     if (ii >= GRIDRES) break;
130     for (jj = j-r; jj <= j+r; jj++) {
131     if (jj < 0) continue;
132     if (jj >= GRIDRES) break;
133     if ((ii-i)*(ii-i) + (jj-j)*(jj-j) > r*r)
134     continue;
135     fill_grid[ii][jj] += dsf_grid[i][j].crad;
136     fill_cnt[ii][jj]++;
137     }
138     }
139     }
140     /* copy back blurred radii */
141     for (i = 0; i < GRIDRES; i++)
142     for (j = 0; j < GRIDRES; j++)
143     if (fill_cnt[i][j])
144     dsf_grid[i][j].crad = fill_grid[i][j]/fill_cnt[i][j];
145     }
146    
147     /* Cull points for more uniform distribution, leave all nval 0 or 1 */
148     static void
149     cull_values(void)
150     {
151     FVECT ovec0, ovec1;
152     double maxang, maxang2;
153     int i, j, ii, jj, r;
154     /* simple greedy algorithm */
155     for (i = 0; i < GRIDRES; i++)
156     for (j = 0; j < GRIDRES; j++) {
157     if (!dsf_grid[i][j].nval)
158     continue;
159     if (!dsf_grid[i][j].crad)
160     continue; /* shouldn't happen */
161     ovec_from_pos(ovec0, i, j);
162     maxang = 2.*R2ANG(dsf_grid[i][j].crad);
163     if (maxang > ovec0[2]) /* clamp near horizon */
164     maxang = ovec0[2];
165     r = maxang*(2.*GRIDRES/M_PI) + 1;
166     maxang2 = maxang*maxang;
167     for (ii = i-r; ii <= i+r; ii++) {
168     if (ii < 0) continue;
169     if (ii >= GRIDRES) break;
170     for (jj = j-r; jj <= j+r; jj++) {
171     if (jj < 0) continue;
172     if (jj >= GRIDRES) break;
173     if (!dsf_grid[ii][jj].nval)
174     continue;
175     if ((ii == i) & (jj == j))
176     continue; /* don't get self-absorbed */
177     ovec_from_pos(ovec1, ii, jj);
178     if (2. - 2.*DOT(ovec0,ovec1) >= maxang2)
179     continue;
180     /* absorb sum */
181     dsf_grid[i][j].vsum += dsf_grid[ii][jj].vsum;
182     dsf_grid[i][j].nval += dsf_grid[ii][jj].nval;
183     /* keep value, though */
184     dsf_grid[ii][jj].vsum /= (float)dsf_grid[ii][jj].nval;
185     dsf_grid[ii][jj].nval = 0;
186     }
187     }
188     }
189     /* final averaging pass */
190     for (i = 0; i < GRIDRES; i++)
191     for (j = 0; j < GRIDRES; j++)
192     if (dsf_grid[i][j].nval > 1) {
193     dsf_grid[i][j].vsum /= (float)dsf_grid[i][j].nval;
194     dsf_grid[i][j].nval = 1;
195     }
196     }
197    
198 greg 2.5 /* Compute minimum BSDF from histogram and clear it */
199     static void
200     comp_bsdf_min()
201     {
202     int cnt;
203     int i, target;
204    
205     cnt = 0;
206     for (i = HISTLEN; i--; )
207     cnt += bsdf_hist[i];
208     if (!cnt) { /* shouldn't happen */
209     bsdf_min = 0;
210     return;
211     }
212     target = cnt/100; /* ignore bottom 1% */
213     cnt = 0;
214     for (i = 0; cnt <= target; i++)
215     cnt += bsdf_hist[i];
216     bsdf_min = histval(i-1);
217     memset(bsdf_hist, 0, sizeof(bsdf_hist));
218     }
219    
220 greg 2.6 /* Find n nearest sub-sampled neighbors to the given grid position */
221     static int
222     get_neighbors(int neigh[][2], int n, const int i, const int j)
223     {
224     int k = 0;
225     int r;
226     /* search concentric squares */
227     for (r = 1; r < GRIDRES; r++) {
228     int ii, jj;
229     for (ii = i-r; ii <= i+r; ii++) {
230     int jstep = 1;
231     if (ii < 0) continue;
232     if (ii >= GRIDRES) break;
233     if ((i-r < ii) & (ii < i+r))
234     jstep = r<<1;
235     for (jj = j-r; jj <= j+r; jj += jstep) {
236     if (jj < 0) continue;
237     if (jj >= GRIDRES) break;
238     if (dsf_grid[ii][jj].nval) {
239     neigh[k][0] = ii;
240     neigh[k][1] = jj;
241     if (++k >= n)
242     return(n);
243     }
244     }
245     }
246     }
247     return(k);
248     }
249    
250     /* Adjust coded radius for the given grid position based on neighborhood */
251     static int
252     adj_coded_radius(const int i, const int j)
253     {
254     const double rad0 = R2ANG(dsf_grid[i][j].crad);
255     double currad = RSCA * rad0;
256 greg 2.7 int neigh[NNEIGH][2];
257 greg 2.6 int n;
258     FVECT our_dir;
259    
260     ovec_from_pos(our_dir, i, j);
261 greg 2.7 n = get_neighbors(neigh, NNEIGH, i, j);
262 greg 2.6 while (n--) {
263     FVECT their_dir;
264     double max_ratio, rad_ok2;
265     /* check our value at neighbor */
266     ovec_from_pos(their_dir, neigh[n][0], neigh[n][1]);
267 greg 2.7 max_ratio = MAXFRAC * dsf_grid[neigh[n][0]][neigh[n][1]].vsum
268 greg 2.6 / dsf_grid[i][j].vsum;
269     if (max_ratio >= 1)
270     continue;
271     rad_ok2 = (DOT(their_dir,our_dir) - 1.)/log(max_ratio);
272     if (rad_ok2 >= currad*currad)
273     continue; /* value fraction OK */
274     currad = sqrt(rad_ok2); /* else reduce lobe radius */
275     if (currad <= rad0) /* limit how small we'll go */
276     return(dsf_grid[i][j].crad);
277     }
278     return(ANG2R(currad)); /* encode selected radius */
279     }
280    
281 greg 2.1 /* Count up filled nodes and build RBF representation from current grid */
282     RBFNODE *
283     make_rbfrep(void)
284     {
285     int niter = 16;
286     double lastVar, thisVar = 100.;
287     int nn;
288     RBFNODE *newnode;
289 greg 2.2 RBFVAL *itera;
290 greg 2.1 int i, j;
291     /* compute RBF radii */
292     compute_radii();
293     /* coagulate lobes */
294     cull_values();
295     nn = 0; /* count selected bins */
296     for (i = 0; i < GRIDRES; i++)
297     for (j = 0; j < GRIDRES; j++)
298     nn += dsf_grid[i][j].nval;
299 greg 2.5 /* compute minimum BSDF */
300     comp_bsdf_min();
301 greg 2.1 /* allocate RBF array */
302     newnode = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
303 greg 2.2 if (newnode == NULL)
304     goto memerr;
305 greg 2.1 newnode->ord = -1;
306     newnode->next = NULL;
307     newnode->ejl = NULL;
308     newnode->invec[2] = sin((M_PI/180.)*theta_in_deg);
309     newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2];
310     newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2];
311     newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
312     newnode->vtotal = 0;
313     newnode->nrbf = nn;
314     nn = 0; /* fill RBF array */
315     for (i = 0; i < GRIDRES; i++)
316     for (j = 0; j < GRIDRES; j++)
317     if (dsf_grid[i][j].nval) {
318     newnode->rbfa[nn].peak = dsf_grid[i][j].vsum;
319 greg 2.6 newnode->rbfa[nn].crad = adj_coded_radius(i, j);
320 greg 2.1 newnode->rbfa[nn].gx = i;
321     newnode->rbfa[nn].gy = j;
322     ++nn;
323     }
324     /* iterate to improve interpolation accuracy */
325 greg 2.2 itera = (RBFVAL *)malloc(sizeof(RBFVAL)*newnode->nrbf);
326     if (itera == NULL)
327     goto memerr;
328     memcpy(itera, newnode->rbfa, sizeof(RBFVAL)*newnode->nrbf);
329 greg 2.1 do {
330     double dsum = 0, dsum2 = 0;
331     nn = 0;
332     for (i = 0; i < GRIDRES; i++)
333     for (j = 0; j < GRIDRES; j++)
334     if (dsf_grid[i][j].nval) {
335     FVECT odir;
336     double corr;
337     ovec_from_pos(odir, i, j);
338 greg 2.2 itera[nn++].peak *= corr =
339 greg 2.1 dsf_grid[i][j].vsum /
340     eval_rbfrep(newnode, odir);
341 greg 2.2 dsum += 1. - corr;
342     dsum2 += (1.-corr)*(1.-corr);
343 greg 2.1 }
344 greg 2.2 memcpy(newnode->rbfa, itera, sizeof(RBFVAL)*newnode->nrbf);
345 greg 2.1 lastVar = thisVar;
346     thisVar = dsum2/(double)nn;
347     #ifdef DEBUG
348     fprintf(stderr, "Avg., RMS error: %.1f%% %.1f%%\n",
349     100.*dsum/(double)nn,
350     100.*sqrt(thisVar));
351     #endif
352     } while (--niter > 0 && lastVar-thisVar > 0.02*lastVar);
353    
354 greg 2.2 free(itera);
355 greg 2.1 nn = 0; /* compute sum for normalization */
356     while (nn < newnode->nrbf)
357     newnode->vtotal += rbf_volume(&newnode->rbfa[nn++]);
358 greg 2.3 #ifdef DEBUG
359     fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n",
360     get_theta180(newnode->invec), get_phi360(newnode->invec),
361     newnode->vtotal);
362     #endif
363 greg 2.1 insert_dsf(newnode);
364    
365     return(newnode);
366 greg 2.2 memerr:
367     fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname);
368     exit(1);
369 greg 2.1 }