1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.28 |
static const char RCSid[] = "$Id: bsdfrbf.c,v 2.27 2016/01/29 16:21:55 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Radial basis function representation for BSDF data. |
6 |
|
|
* |
7 |
|
|
* G. Ward |
8 |
|
|
*/ |
9 |
|
|
|
10 |
greg |
2.13 |
/**************************************************************** |
11 |
|
|
1) Collect samples into a grid using the Shirley-Chiu |
12 |
|
|
angular mapping from a hemisphere to a square. |
13 |
|
|
|
14 |
|
|
2) Compute an adaptive quadtree by subdividing the grid so that |
15 |
|
|
each leaf node has at least one sample up to as many |
16 |
|
|
samples as fit nicely on a plane to within a certain |
17 |
|
|
MSE tolerance. |
18 |
|
|
|
19 |
|
|
3) Place one Gaussian lobe at each leaf node in the quadtree, |
20 |
|
|
sizing it to have a radius equal to the leaf size and |
21 |
|
|
a volume equal to the energy in that node. |
22 |
|
|
*****************************************************************/ |
23 |
|
|
|
24 |
greg |
2.1 |
#define _USE_MATH_DEFINES |
25 |
|
|
#include <stdio.h> |
26 |
|
|
#include <stdlib.h> |
27 |
|
|
#include <string.h> |
28 |
|
|
#include <math.h> |
29 |
|
|
#include "bsdfrep.h" |
30 |
|
|
|
31 |
greg |
2.12 |
#ifndef RSCA |
32 |
greg |
2.25 |
#define RSCA 2.0 /* radius scaling factor (empirical) */ |
33 |
greg |
2.9 |
#endif |
34 |
greg |
2.12 |
#ifndef SMOOTH_MSE |
35 |
greg |
2.19 |
#define SMOOTH_MSE 5e-5 /* acceptable mean squared error */ |
36 |
greg |
2.1 |
#endif |
37 |
greg |
2.12 |
#ifndef SMOOTH_MSER |
38 |
greg |
2.18 |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */ |
39 |
greg |
2.7 |
#endif |
40 |
greg |
2.12 |
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */ |
41 |
|
|
|
42 |
|
|
#define RBFALLOCB 10 /* RBF allocation block size */ |
43 |
|
|
|
44 |
greg |
2.25 |
/* loaded grid or comparison DSFs */ |
45 |
greg |
2.1 |
GRIDVAL dsf_grid[GRIDRES][GRIDRES]; |
46 |
greg |
2.27 |
/* allocated chrominance sums if any */ |
47 |
|
|
float (*spec_grid)[GRIDRES][GRIDRES]; |
48 |
|
|
int nspec_grid = 0; |
49 |
|
|
|
50 |
|
|
/* Set up visible spectrum sampling */ |
51 |
|
|
void |
52 |
|
|
set_spectral_samples(int nspec) |
53 |
|
|
{ |
54 |
|
|
if (rbf_colorimetry == RBCunknown) { |
55 |
|
|
if (nspec_grid > 0) { |
56 |
|
|
free(spec_grid); |
57 |
|
|
spec_grid = NULL; |
58 |
|
|
nspec_grid = 0; |
59 |
|
|
} |
60 |
|
|
if (nspec == 1) { |
61 |
|
|
rbf_colorimetry = RBCphotopic; |
62 |
|
|
return; |
63 |
|
|
} |
64 |
|
|
if (nspec == 3) { |
65 |
|
|
rbf_colorimetry = RBCtristimulus; |
66 |
|
|
spec_grid = (float (*)[GRIDRES][GRIDRES])calloc( |
67 |
|
|
2*GRIDRES*GRIDRES, sizeof(float) ); |
68 |
|
|
if (spec_grid == NULL) |
69 |
|
|
goto mem_error; |
70 |
|
|
nspec_grid = 2; |
71 |
|
|
return; |
72 |
|
|
} |
73 |
|
|
fprintf(stderr, |
74 |
|
|
"%s: only 1 or 3 spectral samples currently supported\n", |
75 |
|
|
progname); |
76 |
|
|
exit(1); |
77 |
|
|
} |
78 |
|
|
if (nspec != nspec_grid+1) { |
79 |
|
|
fprintf(stderr, |
80 |
|
|
"%s: number of spectral samples cannot be changed\n", |
81 |
|
|
progname); |
82 |
|
|
exit(1); |
83 |
|
|
} |
84 |
|
|
return; |
85 |
|
|
mem_error: |
86 |
|
|
fprintf(stderr, "%s: out of memory in set_spectral_samples()\n", |
87 |
|
|
progname); |
88 |
|
|
exit(1); |
89 |
|
|
} |
90 |
greg |
2.1 |
|
91 |
|
|
/* Start new DSF input grid */ |
92 |
|
|
void |
93 |
|
|
new_bsdf_data(double new_theta, double new_phi) |
94 |
|
|
{ |
95 |
|
|
if (!new_input_direction(new_theta, new_phi)) |
96 |
|
|
exit(1); |
97 |
|
|
memset(dsf_grid, 0, sizeof(dsf_grid)); |
98 |
greg |
2.27 |
if (nspec_grid > 0) |
99 |
|
|
memset(spec_grid, 0, sizeof(float)*GRIDRES*GRIDRES*nspec_grid); |
100 |
greg |
2.1 |
} |
101 |
|
|
|
102 |
|
|
/* Add BSDF data point */ |
103 |
|
|
void |
104 |
greg |
2.27 |
add_bsdf_data(double theta_out, double phi_out, const double val[], int isDSF) |
105 |
greg |
2.1 |
{ |
106 |
|
|
FVECT ovec; |
107 |
greg |
2.27 |
double cfact, Yval; |
108 |
greg |
2.1 |
int pos[2]; |
109 |
|
|
|
110 |
greg |
2.27 |
if (nspec_grid > 2) { |
111 |
|
|
fprintf(stderr, "%s: unsupported color space\n", progname); |
112 |
|
|
exit(1); |
113 |
|
|
} |
114 |
greg |
2.1 |
if (!output_orient) /* check output orientation */ |
115 |
|
|
output_orient = 1 - 2*(theta_out > 90.); |
116 |
|
|
else if (output_orient > 0 ^ theta_out < 90.) { |
117 |
greg |
2.27 |
fprintf(stderr, |
118 |
|
|
"%s: cannot handle output angles on both sides of surface\n", |
119 |
|
|
progname); |
120 |
greg |
2.1 |
exit(1); |
121 |
|
|
} |
122 |
|
|
ovec[2] = sin((M_PI/180.)*theta_out); |
123 |
|
|
ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2]; |
124 |
|
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2]; |
125 |
|
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]); |
126 |
greg |
2.27 |
/* BSDF to DSF correction */ |
127 |
|
|
cfact = isDSF ? 1. : ovec[2]; |
128 |
greg |
2.1 |
|
129 |
greg |
2.27 |
Yval = cfact * val[rbf_colorimetry==RBCtristimulus]; |
130 |
greg |
2.4 |
/* update BSDF histogram */ |
131 |
greg |
2.27 |
if (BSDF2SML*ovec[2] < Yval && Yval < BSDF2BIG*ovec[2]) |
132 |
|
|
++bsdf_hist[histndx(Yval/ovec[2])]; |
133 |
greg |
2.4 |
|
134 |
greg |
2.1 |
pos_from_vec(pos, ovec); |
135 |
|
|
|
136 |
greg |
2.27 |
dsf_grid[pos[0]][pos[1]].sum.v += Yval; |
137 |
greg |
2.20 |
dsf_grid[pos[0]][pos[1]].sum.n++; |
138 |
greg |
2.27 |
/* add in X and Z values */ |
139 |
|
|
if (rbf_colorimetry == RBCtristimulus) { |
140 |
greg |
2.28 |
spec_grid[0][pos[0]][pos[1]] += cfact * val[0]; |
141 |
|
|
spec_grid[1][pos[0]][pos[1]] += cfact * val[2]; |
142 |
greg |
2.27 |
} |
143 |
greg |
2.1 |
} |
144 |
|
|
|
145 |
greg |
2.11 |
/* Compute minimum BSDF from histogram (does not clear) */ |
146 |
greg |
2.5 |
static void |
147 |
|
|
comp_bsdf_min() |
148 |
|
|
{ |
149 |
greg |
2.17 |
unsigned long cnt, target; |
150 |
|
|
int i; |
151 |
greg |
2.5 |
|
152 |
|
|
cnt = 0; |
153 |
|
|
for (i = HISTLEN; i--; ) |
154 |
|
|
cnt += bsdf_hist[i]; |
155 |
|
|
if (!cnt) { /* shouldn't happen */ |
156 |
|
|
bsdf_min = 0; |
157 |
|
|
return; |
158 |
|
|
} |
159 |
|
|
target = cnt/100; /* ignore bottom 1% */ |
160 |
|
|
cnt = 0; |
161 |
|
|
for (i = 0; cnt <= target; i++) |
162 |
|
|
cnt += bsdf_hist[i]; |
163 |
|
|
bsdf_min = histval(i-1); |
164 |
|
|
} |
165 |
|
|
|
166 |
greg |
2.12 |
/* Determine if the given region is empty of grid samples */ |
167 |
greg |
2.6 |
static int |
168 |
greg |
2.12 |
empty_region(int x0, int x1, int y0, int y1) |
169 |
greg |
2.6 |
{ |
170 |
greg |
2.12 |
int x, y; |
171 |
|
|
|
172 |
|
|
for (x = x0; x < x1; x++) |
173 |
|
|
for (y = y0; y < y1; y++) |
174 |
greg |
2.20 |
if (dsf_grid[x][y].sum.n) |
175 |
greg |
2.12 |
return(0); |
176 |
|
|
return(1); |
177 |
|
|
} |
178 |
|
|
|
179 |
|
|
/* Determine if the given region is smooth enough to be a single lobe */ |
180 |
|
|
static int |
181 |
|
|
smooth_region(int x0, int x1, int y0, int y1) |
182 |
|
|
{ |
183 |
|
|
RREAL rMtx[3][3]; |
184 |
|
|
FVECT xvec; |
185 |
|
|
double A, B, C, nvs, sqerr; |
186 |
|
|
int x, y, n; |
187 |
|
|
/* compute planar regression */ |
188 |
|
|
memset(rMtx, 0, sizeof(rMtx)); |
189 |
|
|
memset(xvec, 0, sizeof(xvec)); |
190 |
|
|
for (x = x0; x < x1; x++) |
191 |
|
|
for (y = y0; y < y1; y++) |
192 |
greg |
2.20 |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
193 |
|
|
double z = dsf_grid[x][y].sum.v; |
194 |
greg |
2.13 |
rMtx[0][0] += x*x*(double)n; |
195 |
|
|
rMtx[0][1] += x*y*(double)n; |
196 |
|
|
rMtx[0][2] += x*(double)n; |
197 |
|
|
rMtx[1][1] += y*y*(double)n; |
198 |
|
|
rMtx[1][2] += y*(double)n; |
199 |
|
|
rMtx[2][2] += (double)n; |
200 |
greg |
2.12 |
xvec[0] += x*z; |
201 |
|
|
xvec[1] += y*z; |
202 |
|
|
xvec[2] += z; |
203 |
|
|
} |
204 |
|
|
rMtx[1][0] = rMtx[0][1]; |
205 |
greg |
2.15 |
rMtx[2][0] = rMtx[0][2]; |
206 |
greg |
2.12 |
rMtx[2][1] = rMtx[1][2]; |
207 |
|
|
nvs = rMtx[2][2]; |
208 |
|
|
if (SDinvXform(rMtx, rMtx) != SDEnone) |
209 |
greg |
2.16 |
return(1); /* colinear values */ |
210 |
greg |
2.12 |
A = DOT(rMtx[0], xvec); |
211 |
|
|
B = DOT(rMtx[1], xvec); |
212 |
|
|
C = DOT(rMtx[2], xvec); |
213 |
|
|
sqerr = 0.0; /* compute mean squared error */ |
214 |
|
|
for (x = x0; x < x1; x++) |
215 |
|
|
for (y = y0; y < y1; y++) |
216 |
greg |
2.20 |
if ((n = dsf_grid[x][y].sum.n) > 0) { |
217 |
|
|
double d = A*x + B*y + C - dsf_grid[x][y].sum.v/n; |
218 |
greg |
2.12 |
sqerr += n*d*d; |
219 |
greg |
2.6 |
} |
220 |
greg |
2.12 |
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */ |
221 |
|
|
return(1); |
222 |
greg |
2.13 |
/* OR below relative MSE threshold? */ |
223 |
greg |
2.12 |
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER); |
224 |
|
|
} |
225 |
|
|
|
226 |
|
|
/* Create new lobe based on integrated samples in region */ |
227 |
greg |
2.21 |
static int |
228 |
greg |
2.12 |
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1) |
229 |
|
|
{ |
230 |
|
|
double vtot = 0.0; |
231 |
greg |
2.27 |
double CIEXtot = 0.0, CIEZtot = 0.0; |
232 |
greg |
2.12 |
int nv = 0; |
233 |
greg |
2.25 |
double wxsum = 0.0, wysum = 0.0, wtsum = 0.0; |
234 |
greg |
2.12 |
double rad; |
235 |
|
|
int x, y; |
236 |
|
|
/* compute average for region */ |
237 |
|
|
for (x = x0; x < x1; x++) |
238 |
greg |
2.25 |
for (y = y0; y < y1; y++) |
239 |
|
|
if (dsf_grid[x][y].sum.n) { |
240 |
|
|
const double v = dsf_grid[x][y].sum.v; |
241 |
|
|
const int n = dsf_grid[x][y].sum.n; |
242 |
|
|
|
243 |
|
|
if (v > 0) { |
244 |
greg |
2.27 |
const double wt = v / (double)n; |
245 |
greg |
2.25 |
wxsum += wt * x; |
246 |
|
|
wysum += wt * y; |
247 |
|
|
wtsum += wt; |
248 |
|
|
} |
249 |
|
|
vtot += v; |
250 |
|
|
nv += n; |
251 |
greg |
2.27 |
if (rbf_colorimetry == RBCtristimulus) { |
252 |
|
|
CIEXtot += spec_grid[0][x][y]; |
253 |
|
|
CIEZtot += spec_grid[1][x][y]; |
254 |
|
|
} |
255 |
greg |
2.25 |
} |
256 |
greg |
2.12 |
if (!nv) { |
257 |
|
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n", |
258 |
|
|
progname); |
259 |
|
|
exit(1); |
260 |
greg |
2.6 |
} |
261 |
greg |
2.21 |
if (vtot <= 0) /* only create positive lobes */ |
262 |
|
|
return(0); |
263 |
greg |
2.27 |
/* assign color */ |
264 |
|
|
if (rbf_colorimetry == RBCtristimulus) { |
265 |
|
|
const double df = 1.0 / (CIEXtot + vtot + CIEZtot); |
266 |
|
|
C_COLOR cclr; |
267 |
|
|
c_cset(&cclr, CIEXtot*df, vtot*df); |
268 |
|
|
rvp->chroma = c_encodeChroma(&cclr); |
269 |
|
|
} else |
270 |
|
|
rvp->chroma = c_dfchroma; |
271 |
greg |
2.12 |
/* peak value based on integral */ |
272 |
|
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv; |
273 |
|
|
rad = (RSCA/(double)GRIDRES)*(x1-x0); |
274 |
|
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad); |
275 |
greg |
2.25 |
rvp->crad = ANG2R(rad); /* put peak at centroid */ |
276 |
|
|
rvp->gx = (int)(wxsum/wtsum + .5); |
277 |
|
|
rvp->gy = (int)(wysum/wtsum + .5); |
278 |
greg |
2.21 |
return(1); |
279 |
greg |
2.6 |
} |
280 |
|
|
|
281 |
greg |
2.12 |
/* Recursive function to build radial basis function representation */ |
282 |
greg |
2.6 |
static int |
283 |
greg |
2.12 |
build_rbfrep(RBFVAL **arp, int *np, int x0, int x1, int y0, int y1) |
284 |
greg |
2.6 |
{ |
285 |
greg |
2.12 |
int xmid = (x0+x1)>>1; |
286 |
|
|
int ymid = (y0+y1)>>1; |
287 |
|
|
int branched[4]; |
288 |
|
|
int nadded, nleaves; |
289 |
|
|
/* need to make this a leaf? */ |
290 |
|
|
if (empty_region(x0, xmid, y0, ymid) || |
291 |
|
|
empty_region(xmid, x1, y0, ymid) || |
292 |
|
|
empty_region(x0, xmid, ymid, y1) || |
293 |
|
|
empty_region(xmid, x1, ymid, y1)) |
294 |
|
|
return(0); |
295 |
|
|
/* add children (branches+leaves) */ |
296 |
|
|
if ((branched[0] = build_rbfrep(arp, np, x0, xmid, y0, ymid)) < 0) |
297 |
|
|
return(-1); |
298 |
|
|
if ((branched[1] = build_rbfrep(arp, np, xmid, x1, y0, ymid)) < 0) |
299 |
|
|
return(-1); |
300 |
|
|
if ((branched[2] = build_rbfrep(arp, np, x0, xmid, ymid, y1)) < 0) |
301 |
|
|
return(-1); |
302 |
|
|
if ((branched[3] = build_rbfrep(arp, np, xmid, x1, ymid, y1)) < 0) |
303 |
|
|
return(-1); |
304 |
|
|
nadded = branched[0] + branched[1] + branched[2] + branched[3]; |
305 |
|
|
nleaves = !branched[0] + !branched[1] + !branched[2] + !branched[3]; |
306 |
|
|
if (!nleaves) /* nothing but branches? */ |
307 |
|
|
return(nadded); |
308 |
|
|
/* combine 4 leaves into 1? */ |
309 |
greg |
2.14 |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) && |
310 |
|
|
smooth_region(x0, x1, y0, y1)) |
311 |
greg |
2.12 |
return(0); |
312 |
|
|
/* need more array space? */ |
313 |
|
|
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) { |
314 |
|
|
*arp = (RBFVAL *)realloc(*arp, |
315 |
|
|
sizeof(RBFVAL)*(*np+nleaves-1+(1<<RBFALLOCB))); |
316 |
|
|
if (*arp == NULL) |
317 |
|
|
return(-1); |
318 |
greg |
2.6 |
} |
319 |
greg |
2.12 |
/* create lobes for leaves */ |
320 |
greg |
2.21 |
if (!branched[0] && create_lobe(*arp+*np, x0, xmid, y0, ymid)) { |
321 |
|
|
++(*np); ++nadded; |
322 |
|
|
} |
323 |
|
|
if (!branched[1] && create_lobe(*arp+*np, xmid, x1, y0, ymid)) { |
324 |
|
|
++(*np); ++nadded; |
325 |
|
|
} |
326 |
|
|
if (!branched[2] && create_lobe(*arp+*np, x0, xmid, ymid, y1)) { |
327 |
|
|
++(*np); ++nadded; |
328 |
|
|
} |
329 |
|
|
if (!branched[3] && create_lobe(*arp+*np, xmid, x1, ymid, y1)) { |
330 |
|
|
++(*np); ++nadded; |
331 |
|
|
} |
332 |
greg |
2.12 |
return(nadded); |
333 |
greg |
2.6 |
} |
334 |
|
|
|
335 |
greg |
2.1 |
/* Count up filled nodes and build RBF representation from current grid */ |
336 |
|
|
RBFNODE * |
337 |
greg |
2.12 |
make_rbfrep() |
338 |
greg |
2.1 |
{ |
339 |
greg |
2.12 |
RBFNODE *newnode; |
340 |
|
|
RBFVAL *rbfarr; |
341 |
greg |
2.1 |
int nn; |
342 |
greg |
2.5 |
/* compute minimum BSDF */ |
343 |
|
|
comp_bsdf_min(); |
344 |
greg |
2.12 |
/* create RBF node list */ |
345 |
|
|
rbfarr = NULL; nn = 0; |
346 |
greg |
2.22 |
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0) { |
347 |
|
|
if (nn) |
348 |
|
|
goto memerr; |
349 |
greg |
2.24 |
fprintf(stderr, |
350 |
|
|
"%s: warning - skipping bad incidence (%.1f,%.1f)\n", |
351 |
|
|
progname, theta_in_deg, phi_in_deg); |
352 |
|
|
return(NULL); |
353 |
greg |
2.22 |
} |
354 |
greg |
2.12 |
/* (re)allocate RBF array */ |
355 |
|
|
newnode = (RBFNODE *)realloc(rbfarr, |
356 |
|
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1)); |
357 |
greg |
2.2 |
if (newnode == NULL) |
358 |
|
|
goto memerr; |
359 |
greg |
2.12 |
/* copy computed lobes into RBF node */ |
360 |
|
|
memmove(newnode->rbfa, newnode, sizeof(RBFVAL)*nn); |
361 |
greg |
2.1 |
newnode->ord = -1; |
362 |
|
|
newnode->next = NULL; |
363 |
|
|
newnode->ejl = NULL; |
364 |
|
|
newnode->invec[2] = sin((M_PI/180.)*theta_in_deg); |
365 |
|
|
newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
366 |
|
|
newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2]; |
367 |
|
|
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]); |
368 |
greg |
2.12 |
newnode->vtotal = .0; |
369 |
greg |
2.1 |
newnode->nrbf = nn; |
370 |
greg |
2.12 |
/* compute sum for normalization */ |
371 |
|
|
while (nn-- > 0) |
372 |
|
|
newnode->vtotal += rbf_volume(&newnode->rbfa[nn]); |
373 |
greg |
2.3 |
#ifdef DEBUG |
374 |
greg |
2.12 |
fprintf(stderr, "Built RBF with %d lobes\n", newnode->nrbf); |
375 |
greg |
2.3 |
fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n", |
376 |
|
|
get_theta180(newnode->invec), get_phi360(newnode->invec), |
377 |
|
|
newnode->vtotal); |
378 |
|
|
#endif |
379 |
greg |
2.1 |
insert_dsf(newnode); |
380 |
|
|
return(newnode); |
381 |
greg |
2.2 |
memerr: |
382 |
|
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname); |
383 |
|
|
exit(1); |
384 |
greg |
2.1 |
} |