| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.18 |
static const char RCSid[] = "$Id: bsdfrbf.c,v 2.17 2014/02/17 21:56:22 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Radial basis function representation for BSDF data.
|
| 6 |
|
|
*
|
| 7 |
|
|
* G. Ward
|
| 8 |
|
|
*/
|
| 9 |
|
|
|
| 10 |
greg |
2.13 |
/****************************************************************
|
| 11 |
|
|
1) Collect samples into a grid using the Shirley-Chiu
|
| 12 |
|
|
angular mapping from a hemisphere to a square.
|
| 13 |
|
|
|
| 14 |
|
|
2) Compute an adaptive quadtree by subdividing the grid so that
|
| 15 |
|
|
each leaf node has at least one sample up to as many
|
| 16 |
|
|
samples as fit nicely on a plane to within a certain
|
| 17 |
|
|
MSE tolerance.
|
| 18 |
|
|
|
| 19 |
|
|
3) Place one Gaussian lobe at each leaf node in the quadtree,
|
| 20 |
|
|
sizing it to have a radius equal to the leaf size and
|
| 21 |
|
|
a volume equal to the energy in that node.
|
| 22 |
|
|
*****************************************************************/
|
| 23 |
|
|
|
| 24 |
greg |
2.1 |
#define _USE_MATH_DEFINES
|
| 25 |
|
|
#include <stdio.h>
|
| 26 |
|
|
#include <stdlib.h>
|
| 27 |
|
|
#include <string.h>
|
| 28 |
|
|
#include <math.h>
|
| 29 |
|
|
#include "bsdfrep.h"
|
| 30 |
|
|
|
| 31 |
greg |
2.12 |
#ifndef RSCA
|
| 32 |
|
|
#define RSCA 2.2 /* radius scaling factor (empirical) */
|
| 33 |
greg |
2.9 |
#endif
|
| 34 |
greg |
2.12 |
#ifndef SMOOTH_MSE
|
| 35 |
greg |
2.18 |
#define SMOOTH_MSE 2e-5 /* acceptable mean squared error */
|
| 36 |
greg |
2.1 |
#endif
|
| 37 |
greg |
2.12 |
#ifndef SMOOTH_MSER
|
| 38 |
greg |
2.18 |
#define SMOOTH_MSER 0.03 /* acceptable relative MSE */
|
| 39 |
greg |
2.7 |
#endif
|
| 40 |
greg |
2.12 |
#define MAX_RAD (GRIDRES/8) /* maximum lobe radius */
|
| 41 |
|
|
|
| 42 |
|
|
#define RBFALLOCB 10 /* RBF allocation block size */
|
| 43 |
|
|
|
| 44 |
greg |
2.1 |
/* our loaded grid for this incident angle */
|
| 45 |
|
|
GRIDVAL dsf_grid[GRIDRES][GRIDRES];
|
| 46 |
|
|
|
| 47 |
|
|
/* Start new DSF input grid */
|
| 48 |
|
|
void
|
| 49 |
|
|
new_bsdf_data(double new_theta, double new_phi)
|
| 50 |
|
|
{
|
| 51 |
|
|
if (!new_input_direction(new_theta, new_phi))
|
| 52 |
|
|
exit(1);
|
| 53 |
|
|
memset(dsf_grid, 0, sizeof(dsf_grid));
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
/* Add BSDF data point */
|
| 57 |
|
|
void
|
| 58 |
|
|
add_bsdf_data(double theta_out, double phi_out, double val, int isDSF)
|
| 59 |
|
|
{
|
| 60 |
|
|
FVECT ovec;
|
| 61 |
|
|
int pos[2];
|
| 62 |
|
|
|
| 63 |
|
|
if (!output_orient) /* check output orientation */
|
| 64 |
|
|
output_orient = 1 - 2*(theta_out > 90.);
|
| 65 |
|
|
else if (output_orient > 0 ^ theta_out < 90.) {
|
| 66 |
|
|
fputs("Cannot handle output angles on both sides of surface\n",
|
| 67 |
|
|
stderr);
|
| 68 |
|
|
exit(1);
|
| 69 |
|
|
}
|
| 70 |
|
|
ovec[2] = sin((M_PI/180.)*theta_out);
|
| 71 |
|
|
ovec[0] = cos((M_PI/180.)*phi_out) * ovec[2];
|
| 72 |
|
|
ovec[1] = sin((M_PI/180.)*phi_out) * ovec[2];
|
| 73 |
|
|
ovec[2] = sqrt(1. - ovec[2]*ovec[2]);
|
| 74 |
|
|
|
| 75 |
greg |
2.8 |
if (val <= 0) /* truncate to zero */
|
| 76 |
|
|
val = 0;
|
| 77 |
|
|
else if (!isDSF)
|
| 78 |
greg |
2.1 |
val *= ovec[2]; /* convert from BSDF to DSF */
|
| 79 |
|
|
|
| 80 |
greg |
2.4 |
/* update BSDF histogram */
|
| 81 |
|
|
if (val < BSDF2BIG*ovec[2] && val > BSDF2SML*ovec[2])
|
| 82 |
|
|
++bsdf_hist[histndx(val/ovec[2])];
|
| 83 |
|
|
|
| 84 |
greg |
2.1 |
pos_from_vec(pos, ovec);
|
| 85 |
|
|
|
| 86 |
|
|
dsf_grid[pos[0]][pos[1]].vsum += val;
|
| 87 |
|
|
dsf_grid[pos[0]][pos[1]].nval++;
|
| 88 |
|
|
}
|
| 89 |
|
|
|
| 90 |
greg |
2.11 |
/* Compute minimum BSDF from histogram (does not clear) */
|
| 91 |
greg |
2.5 |
static void
|
| 92 |
|
|
comp_bsdf_min()
|
| 93 |
|
|
{
|
| 94 |
greg |
2.17 |
unsigned long cnt, target;
|
| 95 |
|
|
int i;
|
| 96 |
greg |
2.5 |
|
| 97 |
|
|
cnt = 0;
|
| 98 |
|
|
for (i = HISTLEN; i--; )
|
| 99 |
|
|
cnt += bsdf_hist[i];
|
| 100 |
|
|
if (!cnt) { /* shouldn't happen */
|
| 101 |
|
|
bsdf_min = 0;
|
| 102 |
|
|
return;
|
| 103 |
|
|
}
|
| 104 |
|
|
target = cnt/100; /* ignore bottom 1% */
|
| 105 |
|
|
cnt = 0;
|
| 106 |
|
|
for (i = 0; cnt <= target; i++)
|
| 107 |
|
|
cnt += bsdf_hist[i];
|
| 108 |
|
|
bsdf_min = histval(i-1);
|
| 109 |
|
|
}
|
| 110 |
|
|
|
| 111 |
greg |
2.12 |
/* Determine if the given region is empty of grid samples */
|
| 112 |
greg |
2.6 |
static int
|
| 113 |
greg |
2.12 |
empty_region(int x0, int x1, int y0, int y1)
|
| 114 |
greg |
2.6 |
{
|
| 115 |
greg |
2.12 |
int x, y;
|
| 116 |
|
|
|
| 117 |
|
|
for (x = x0; x < x1; x++)
|
| 118 |
|
|
for (y = y0; y < y1; y++)
|
| 119 |
|
|
if (dsf_grid[x][y].nval)
|
| 120 |
|
|
return(0);
|
| 121 |
|
|
return(1);
|
| 122 |
|
|
}
|
| 123 |
|
|
|
| 124 |
|
|
/* Determine if the given region is smooth enough to be a single lobe */
|
| 125 |
|
|
static int
|
| 126 |
|
|
smooth_region(int x0, int x1, int y0, int y1)
|
| 127 |
|
|
{
|
| 128 |
|
|
RREAL rMtx[3][3];
|
| 129 |
|
|
FVECT xvec;
|
| 130 |
|
|
double A, B, C, nvs, sqerr;
|
| 131 |
|
|
int x, y, n;
|
| 132 |
|
|
/* compute planar regression */
|
| 133 |
|
|
memset(rMtx, 0, sizeof(rMtx));
|
| 134 |
|
|
memset(xvec, 0, sizeof(xvec));
|
| 135 |
|
|
for (x = x0; x < x1; x++)
|
| 136 |
|
|
for (y = y0; y < y1; y++)
|
| 137 |
|
|
if ((n = dsf_grid[x][y].nval) > 0) {
|
| 138 |
|
|
double z = dsf_grid[x][y].vsum;
|
| 139 |
greg |
2.13 |
rMtx[0][0] += x*x*(double)n;
|
| 140 |
|
|
rMtx[0][1] += x*y*(double)n;
|
| 141 |
|
|
rMtx[0][2] += x*(double)n;
|
| 142 |
|
|
rMtx[1][1] += y*y*(double)n;
|
| 143 |
|
|
rMtx[1][2] += y*(double)n;
|
| 144 |
|
|
rMtx[2][2] += (double)n;
|
| 145 |
greg |
2.12 |
xvec[0] += x*z;
|
| 146 |
|
|
xvec[1] += y*z;
|
| 147 |
|
|
xvec[2] += z;
|
| 148 |
|
|
}
|
| 149 |
|
|
rMtx[1][0] = rMtx[0][1];
|
| 150 |
greg |
2.15 |
rMtx[2][0] = rMtx[0][2];
|
| 151 |
greg |
2.12 |
rMtx[2][1] = rMtx[1][2];
|
| 152 |
|
|
nvs = rMtx[2][2];
|
| 153 |
|
|
if (SDinvXform(rMtx, rMtx) != SDEnone)
|
| 154 |
greg |
2.16 |
return(1); /* colinear values */
|
| 155 |
greg |
2.12 |
A = DOT(rMtx[0], xvec);
|
| 156 |
|
|
B = DOT(rMtx[1], xvec);
|
| 157 |
|
|
C = DOT(rMtx[2], xvec);
|
| 158 |
|
|
sqerr = 0.0; /* compute mean squared error */
|
| 159 |
|
|
for (x = x0; x < x1; x++)
|
| 160 |
|
|
for (y = y0; y < y1; y++)
|
| 161 |
|
|
if ((n = dsf_grid[x][y].nval) > 0) {
|
| 162 |
|
|
double d = A*x + B*y + C - dsf_grid[x][y].vsum/n;
|
| 163 |
|
|
sqerr += n*d*d;
|
| 164 |
greg |
2.6 |
}
|
| 165 |
greg |
2.12 |
if (sqerr <= nvs*SMOOTH_MSE) /* below absolute MSE threshold? */
|
| 166 |
|
|
return(1);
|
| 167 |
greg |
2.13 |
/* OR below relative MSE threshold? */
|
| 168 |
greg |
2.12 |
return(sqerr*nvs <= xvec[2]*xvec[2]*SMOOTH_MSER);
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
/* Create new lobe based on integrated samples in region */
|
| 172 |
|
|
static void
|
| 173 |
|
|
create_lobe(RBFVAL *rvp, int x0, int x1, int y0, int y1)
|
| 174 |
|
|
{
|
| 175 |
|
|
double vtot = 0.0;
|
| 176 |
|
|
int nv = 0;
|
| 177 |
|
|
double rad;
|
| 178 |
|
|
int x, y;
|
| 179 |
|
|
/* compute average for region */
|
| 180 |
|
|
for (x = x0; x < x1; x++)
|
| 181 |
|
|
for (y = y0; y < y1; y++) {
|
| 182 |
|
|
vtot += dsf_grid[x][y].vsum;
|
| 183 |
|
|
nv += dsf_grid[x][y].nval;
|
| 184 |
|
|
}
|
| 185 |
|
|
if (!nv) {
|
| 186 |
|
|
fprintf(stderr, "%s: internal - missing samples in create_lobe\n",
|
| 187 |
|
|
progname);
|
| 188 |
|
|
exit(1);
|
| 189 |
greg |
2.6 |
}
|
| 190 |
greg |
2.12 |
/* peak value based on integral */
|
| 191 |
|
|
vtot *= (x1-x0)*(y1-y0)*(2.*M_PI/GRIDRES/GRIDRES)/(double)nv;
|
| 192 |
|
|
rad = (RSCA/(double)GRIDRES)*(x1-x0);
|
| 193 |
|
|
rvp->peak = vtot / ((2.*M_PI) * rad*rad);
|
| 194 |
|
|
rvp->crad = ANG2R(rad);
|
| 195 |
|
|
rvp->gx = (x0+x1)>>1;
|
| 196 |
|
|
rvp->gy = (y0+y1)>>1;
|
| 197 |
greg |
2.6 |
}
|
| 198 |
|
|
|
| 199 |
greg |
2.12 |
/* Recursive function to build radial basis function representation */
|
| 200 |
greg |
2.6 |
static int
|
| 201 |
greg |
2.12 |
build_rbfrep(RBFVAL **arp, int *np, int x0, int x1, int y0, int y1)
|
| 202 |
greg |
2.6 |
{
|
| 203 |
greg |
2.12 |
int xmid = (x0+x1)>>1;
|
| 204 |
|
|
int ymid = (y0+y1)>>1;
|
| 205 |
|
|
int branched[4];
|
| 206 |
|
|
int nadded, nleaves;
|
| 207 |
|
|
/* need to make this a leaf? */
|
| 208 |
|
|
if (empty_region(x0, xmid, y0, ymid) ||
|
| 209 |
|
|
empty_region(xmid, x1, y0, ymid) ||
|
| 210 |
|
|
empty_region(x0, xmid, ymid, y1) ||
|
| 211 |
|
|
empty_region(xmid, x1, ymid, y1))
|
| 212 |
|
|
return(0);
|
| 213 |
|
|
/* add children (branches+leaves) */
|
| 214 |
|
|
if ((branched[0] = build_rbfrep(arp, np, x0, xmid, y0, ymid)) < 0)
|
| 215 |
|
|
return(-1);
|
| 216 |
|
|
if ((branched[1] = build_rbfrep(arp, np, xmid, x1, y0, ymid)) < 0)
|
| 217 |
|
|
return(-1);
|
| 218 |
|
|
if ((branched[2] = build_rbfrep(arp, np, x0, xmid, ymid, y1)) < 0)
|
| 219 |
|
|
return(-1);
|
| 220 |
|
|
if ((branched[3] = build_rbfrep(arp, np, xmid, x1, ymid, y1)) < 0)
|
| 221 |
|
|
return(-1);
|
| 222 |
|
|
nadded = branched[0] + branched[1] + branched[2] + branched[3];
|
| 223 |
|
|
nleaves = !branched[0] + !branched[1] + !branched[2] + !branched[3];
|
| 224 |
|
|
if (!nleaves) /* nothing but branches? */
|
| 225 |
|
|
return(nadded);
|
| 226 |
|
|
/* combine 4 leaves into 1? */
|
| 227 |
greg |
2.14 |
if ((nleaves == 4) & (x1-x0 <= MAX_RAD) &&
|
| 228 |
|
|
smooth_region(x0, x1, y0, y1))
|
| 229 |
greg |
2.12 |
return(0);
|
| 230 |
|
|
/* need more array space? */
|
| 231 |
|
|
if ((*np+nleaves-1)>>RBFALLOCB != (*np-1)>>RBFALLOCB) {
|
| 232 |
|
|
*arp = (RBFVAL *)realloc(*arp,
|
| 233 |
|
|
sizeof(RBFVAL)*(*np+nleaves-1+(1<<RBFALLOCB)));
|
| 234 |
|
|
if (*arp == NULL)
|
| 235 |
|
|
return(-1);
|
| 236 |
greg |
2.6 |
}
|
| 237 |
greg |
2.12 |
/* create lobes for leaves */
|
| 238 |
|
|
if (!branched[0])
|
| 239 |
|
|
create_lobe(*arp+(*np)++, x0, xmid, y0, ymid);
|
| 240 |
|
|
if (!branched[1])
|
| 241 |
|
|
create_lobe(*arp+(*np)++, xmid, x1, y0, ymid);
|
| 242 |
|
|
if (!branched[2])
|
| 243 |
|
|
create_lobe(*arp+(*np)++, x0, xmid, ymid, y1);
|
| 244 |
|
|
if (!branched[3])
|
| 245 |
|
|
create_lobe(*arp+(*np)++, xmid, x1, ymid, y1);
|
| 246 |
|
|
nadded += nleaves;
|
| 247 |
|
|
return(nadded);
|
| 248 |
greg |
2.6 |
}
|
| 249 |
|
|
|
| 250 |
greg |
2.1 |
/* Count up filled nodes and build RBF representation from current grid */
|
| 251 |
|
|
RBFNODE *
|
| 252 |
greg |
2.12 |
make_rbfrep()
|
| 253 |
greg |
2.1 |
{
|
| 254 |
greg |
2.12 |
RBFNODE *newnode;
|
| 255 |
|
|
RBFVAL *rbfarr;
|
| 256 |
greg |
2.1 |
int nn;
|
| 257 |
greg |
2.5 |
/* compute minimum BSDF */
|
| 258 |
|
|
comp_bsdf_min();
|
| 259 |
greg |
2.12 |
/* create RBF node list */
|
| 260 |
|
|
rbfarr = NULL; nn = 0;
|
| 261 |
|
|
if (build_rbfrep(&rbfarr, &nn, 0, GRIDRES, 0, GRIDRES) <= 0)
|
| 262 |
|
|
goto memerr;
|
| 263 |
|
|
/* (re)allocate RBF array */
|
| 264 |
|
|
newnode = (RBFNODE *)realloc(rbfarr,
|
| 265 |
|
|
sizeof(RBFNODE) + sizeof(RBFVAL)*(nn-1));
|
| 266 |
greg |
2.2 |
if (newnode == NULL)
|
| 267 |
|
|
goto memerr;
|
| 268 |
greg |
2.12 |
/* copy computed lobes into RBF node */
|
| 269 |
|
|
memmove(newnode->rbfa, newnode, sizeof(RBFVAL)*nn);
|
| 270 |
greg |
2.1 |
newnode->ord = -1;
|
| 271 |
|
|
newnode->next = NULL;
|
| 272 |
|
|
newnode->ejl = NULL;
|
| 273 |
|
|
newnode->invec[2] = sin((M_PI/180.)*theta_in_deg);
|
| 274 |
|
|
newnode->invec[0] = cos((M_PI/180.)*phi_in_deg)*newnode->invec[2];
|
| 275 |
|
|
newnode->invec[1] = sin((M_PI/180.)*phi_in_deg)*newnode->invec[2];
|
| 276 |
|
|
newnode->invec[2] = input_orient*sqrt(1. - newnode->invec[2]*newnode->invec[2]);
|
| 277 |
greg |
2.12 |
newnode->vtotal = .0;
|
| 278 |
greg |
2.1 |
newnode->nrbf = nn;
|
| 279 |
greg |
2.12 |
/* compute sum for normalization */
|
| 280 |
|
|
while (nn-- > 0)
|
| 281 |
|
|
newnode->vtotal += rbf_volume(&newnode->rbfa[nn]);
|
| 282 |
greg |
2.3 |
#ifdef DEBUG
|
| 283 |
greg |
2.12 |
fprintf(stderr, "Built RBF with %d lobes\n", newnode->nrbf);
|
| 284 |
greg |
2.3 |
fprintf(stderr, "Integrated DSF at (%.1f,%.1f) deg. is %.2f\n",
|
| 285 |
|
|
get_theta180(newnode->invec), get_phi360(newnode->invec),
|
| 286 |
|
|
newnode->vtotal);
|
| 287 |
|
|
#endif
|
| 288 |
greg |
2.1 |
insert_dsf(newnode);
|
| 289 |
|
|
|
| 290 |
|
|
return(newnode);
|
| 291 |
greg |
2.2 |
memerr:
|
| 292 |
|
|
fprintf(stderr, "%s: Out of memory in make_rbfrep()\n", progname);
|
| 293 |
|
|
exit(1);
|
| 294 |
greg |
2.1 |
}
|