ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfmesh.c
Revision: 2.5
Committed: Thu Nov 8 23:32:30 2012 UTC (11 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +17 -20 lines
Log Message:
Made migration_step() re-entrant

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfmesh.c,v 2.4 2012/11/08 23:11:41 greg Exp $";
3 #endif
4 /*
5 * Create BSDF advection mesh from radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #ifndef _WIN32
11 #include <unistd.h>
12 #include <sys/wait.h>
13 #include <sys/mman.h>
14 #endif
15 #define _USE_MATH_DEFINES
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <math.h>
20 #include "bsdfrep.h"
21 /* number of processes to run */
22 int nprocs = 1;
23 /* number of children (-1 in child) */
24 static int nchild = 0;
25
26 typedef struct {
27 int nrows, ncols; /* array size (matches migration) */
28 float *price; /* migration prices */
29 short *sord; /* sort for each row, low to high */
30 } PRICEMAT; /* sorted pricing matrix */
31
32 #define pricerow(p,i) ((p)->price + (i)*(p)->ncols)
33 #define psortrow(p,i) ((p)->sord + (i)*(p)->ncols)
34
35 /* Create a new migration holder (sharing memory for multiprocessing) */
36 static MIGRATION *
37 new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
38 {
39 size_t memlen = sizeof(MIGRATION) +
40 sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
41 MIGRATION *newmig;
42 #ifdef _WIN32
43 if (nprocs > 1)
44 fprintf(stderr, "%s: warning - multiprocessing not supported\n",
45 progname);
46 nprocs = 1;
47 newmig = (MIGRATION *)malloc(memlen);
48 #else
49 if (nprocs <= 1) { /* single process? */
50 newmig = (MIGRATION *)malloc(memlen);
51 } else { /* else need to share memory */
52 newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
53 MAP_ANON|MAP_SHARED, -1, 0);
54 if ((void *)newmig == MAP_FAILED)
55 newmig = NULL;
56 }
57 #endif
58 if (newmig == NULL) {
59 fprintf(stderr, "%s: cannot allocate new migration\n", progname);
60 exit(1);
61 }
62 newmig->rbfv[0] = from_rbf;
63 newmig->rbfv[1] = to_rbf;
64 /* insert in edge lists */
65 newmig->enxt[0] = from_rbf->ejl;
66 from_rbf->ejl = newmig;
67 newmig->enxt[1] = to_rbf->ejl;
68 to_rbf->ejl = newmig;
69 newmig->next = mig_list; /* push onto global list */
70 return(mig_list = newmig);
71 }
72
73 #ifdef _WIN32
74 #define await_children(n) (void)(n)
75 #define run_subprocess() 0
76 #define end_subprocess() (void)0
77 #else
78
79 /* Wait for the specified number of child processes to complete */
80 static void
81 await_children(int n)
82 {
83 int exit_status = 0;
84
85 if (n > nchild)
86 n = nchild;
87 while (n-- > 0) {
88 int status;
89 if (wait(&status) < 0) {
90 fprintf(stderr, "%s: missing child(ren)!\n", progname);
91 nchild = 0;
92 break;
93 }
94 --nchild;
95 if (status) { /* something wrong */
96 if ((status = WEXITSTATUS(status)))
97 exit_status = status;
98 else
99 exit_status += !exit_status;
100 fprintf(stderr, "%s: subprocess died\n", progname);
101 n = nchild; /* wait for the rest */
102 }
103 }
104 if (exit_status)
105 exit(exit_status);
106 }
107
108 /* Start child process if multiprocessing selected */
109 static pid_t
110 run_subprocess(void)
111 {
112 int status;
113 pid_t pid;
114
115 if (nprocs <= 1) /* any children requested? */
116 return(0);
117 await_children(nchild + 1 - nprocs); /* free up child process */
118 if ((pid = fork())) {
119 if (pid < 0) {
120 fprintf(stderr, "%s: cannot fork subprocess\n",
121 progname);
122 exit(1);
123 }
124 ++nchild; /* subprocess started */
125 return(pid);
126 }
127 nchild = -1;
128 return(0); /* put child to work */
129 }
130
131 /* If we are in subprocess, call exit */
132 #define end_subprocess() if (nchild < 0) _exit(0); else
133
134 #endif /* ! _WIN32 */
135
136 /* Comparison routine needed for sorting price row */
137 static int
138 msrt_cmp(void *b, const void *p1, const void *p2)
139 {
140 PRICEMAT *pm = (PRICEMAT *)b;
141 int ri = ((const short *)p1 - pm->sord) / pm->ncols;
142 float c1 = pricerow(pm,ri)[*(const short *)p1];
143 float c2 = pricerow(pm,ri)[*(const short *)p2];
144
145 if (c1 > c2) return(1);
146 if (c1 < c2) return(-1);
147 return(0);
148 }
149
150 /* Compute (and allocate) migration price matrix for optimization */
151 static void
152 price_routes(PRICEMAT *pm, const RBFNODE *from_rbf, const RBFNODE *to_rbf)
153 {
154 FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf);
155 int i, j;
156
157 pm->nrows = from_rbf->nrbf;
158 pm->ncols = to_rbf->nrbf;
159 pm->price = (float *)malloc(sizeof(float) * pm->nrows*pm->ncols);
160 pm->sord = (short *)malloc(sizeof(short) * pm->nrows*pm->ncols);
161
162 if ((pm->price == NULL) | (pm->sord == NULL) | (vto == NULL)) {
163 fprintf(stderr, "%s: Out of memory in migration_costs()\n",
164 progname);
165 exit(1);
166 }
167 for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */
168 ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy);
169
170 for (i = from_rbf->nrbf; i--; ) {
171 const double from_ang = R2ANG(from_rbf->rbfa[i].crad);
172 FVECT vfrom;
173 ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy);
174 for (j = to_rbf->nrbf; j--; ) {
175 pricerow(pm,i)[j] = acos(DOT(vfrom, vto[j])) +
176 fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang);
177 psortrow(pm,i)[j] = j;
178 }
179 qsort_r(psortrow(pm,i), pm->ncols, sizeof(short), pm, &msrt_cmp);
180 }
181 free(vto);
182 }
183
184 /* Free price matrix */
185 static void
186 free_routes(PRICEMAT *pm)
187 {
188 free(pm->price); pm->price = NULL;
189 free(pm->sord); pm->sord = NULL;
190 }
191
192 /* Compute minimum (optimistic) cost for moving the given source material */
193 static double
194 min_cost(double amt2move, const double *avail, const PRICEMAT *pm, int s)
195 {
196 double total_cost = 0;
197 int j;
198
199 if (amt2move <= FTINY) /* pre-emptive check */
200 return(.0);
201 /* move cheapest first */
202 for (j = 0; j < pm->ncols && amt2move > FTINY; j++) {
203 int d = psortrow(pm,s)[j];
204 double amt = (amt2move < avail[d]) ? amt2move : avail[d];
205
206 total_cost += amt * pricerow(pm,s)[d];
207 amt2move -= amt;
208 }
209 return(total_cost);
210 }
211
212 /* Take a step in migration by choosing optimal bucket to transfer */
213 static double
214 migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const PRICEMAT *pm)
215 {
216 const double maxamt = 1./(double)pm->ncols;
217 const double minamt = maxamt*5e-6;
218 double *src_cost;
219 struct {
220 int s, d; /* source and destination */
221 double price; /* price estimate per amount moved */
222 double amt; /* amount we can move */
223 } cur, best;
224 int i;
225 /* allocate cost array */
226 src_cost = (double *)malloc(sizeof(double)*pm->nrows);
227 if (src_cost == NULL) {
228 fprintf(stderr, "%s: Out of memory in migration_step()\n",
229 progname);
230 exit(1);
231 }
232 for (i = pm->nrows; i--; ) /* starting costs for diff. */
233 src_cost[i] = min_cost(src_rem[i], dst_rem, pm, i);
234
235 /* find best source & dest. */
236 best.s = best.d = -1; best.price = FHUGE; best.amt = 0;
237 for (cur.s = pm->nrows; cur.s--; ) {
238 double cost_others = 0;
239
240 if (src_rem[cur.s] <= minamt)
241 continue;
242 /* examine cheapest dest. */
243 for (i = 0; i < pm->ncols; i++)
244 if (dst_rem[ cur.d = psortrow(pm,cur.s)[i] ] > minamt)
245 break;
246 if (i >= pm->ncols)
247 break;
248 if ((cur.price = pricerow(pm,cur.s)[cur.d]) >= best.price)
249 continue; /* no point checking further */
250 cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ?
251 src_rem[cur.s] : dst_rem[cur.d];
252 if (cur.amt > maxamt) cur.amt = maxamt;
253 dst_rem[cur.d] -= cur.amt; /* add up differential costs */
254 for (i = pm->nrows; i--; )
255 if (i != cur.s)
256 cost_others += min_cost(src_rem[i], dst_rem, pm, i)
257 - src_cost[i];
258 dst_rem[cur.d] += cur.amt; /* undo trial move */
259 cur.price += cost_others/cur.amt; /* adjust effective price */
260 if (cur.price < best.price) /* are we better than best? */
261 best = cur;
262 }
263 free(src_cost); /* finish up */
264
265 if ((best.s < 0) | (best.d < 0)) /* nothing left to move? */
266 return(.0);
267 /* else make the actual move */
268 mtx_coef(mig,best.s,best.d) += best.amt;
269 src_rem[best.s] -= best.amt;
270 dst_rem[best.d] -= best.amt;
271 return(best.amt);
272 }
273
274 #ifdef DEBUG
275 static char *
276 thetaphi(const FVECT v)
277 {
278 static char buf[128];
279 double theta, phi;
280
281 theta = 180./M_PI*acos(v[2]);
282 phi = 180./M_PI*atan2(v[1],v[0]);
283 sprintf(buf, "(%.0f,%.0f)", theta, phi);
284
285 return(buf);
286 }
287 #endif
288
289 /* Compute and insert migration along directed edge (may fork child) */
290 static MIGRATION *
291 create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
292 {
293 const double end_thresh = 5e-6;
294 PRICEMAT pmtx;
295 MIGRATION *newmig;
296 double *src_rem, *dst_rem;
297 double total_rem = 1., move_amt;
298 int i;
299 /* check if exists already */
300 for (newmig = from_rbf->ejl; newmig != NULL;
301 newmig = nextedge(from_rbf,newmig))
302 if (newmig->rbfv[1] == to_rbf)
303 return(NULL);
304 /* else allocate */
305 newmig = new_migration(from_rbf, to_rbf);
306 if (run_subprocess())
307 return(newmig); /* child continues */
308 price_routes(&pmtx, from_rbf, to_rbf);
309 src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf);
310 dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf);
311 if ((src_rem == NULL) | (dst_rem == NULL)) {
312 fprintf(stderr, "%s: Out of memory in create_migration()\n",
313 progname);
314 exit(1);
315 }
316 #ifdef DEBUG
317 fprintf(stderr, "Building path from (theta,phi) %s ",
318 thetaphi(from_rbf->invec));
319 fprintf(stderr, "to %s with %d x %d matrix\n",
320 thetaphi(to_rbf->invec),
321 from_rbf->nrbf, to_rbf->nrbf);
322 #endif
323 /* starting quantities */
324 memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf);
325 for (i = from_rbf->nrbf; i--; )
326 src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal;
327 for (i = to_rbf->nrbf; i--; )
328 dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal;
329 do { /* move a bit at a time */
330 move_amt = migration_step(newmig, src_rem, dst_rem, &pmtx);
331 total_rem -= move_amt;
332 #ifdef DEBUG
333 if (!nchild)
334 fprintf(stderr, "\r%.9f remaining...", total_rem);
335 #endif
336 } while ((total_rem > end_thresh) & (move_amt > 0));
337 #ifdef DEBUG
338 if (!nchild) fputs("done.\n", stderr);
339 else fprintf(stderr, "finished with %.9f remaining\n", total_rem);
340 #endif
341 for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
342 float nf = rbf_volume(&from_rbf->rbfa[i]);
343 int j;
344 if (nf <= FTINY) continue;
345 nf = from_rbf->vtotal / nf;
346 for (j = to_rbf->nrbf; j--; )
347 mtx_coef(newmig,i,j) *= nf;
348 }
349 end_subprocess(); /* exit here if subprocess */
350 free_routes(&pmtx); /* free working arrays */
351 free(src_rem);
352 free(dst_rem);
353 return(newmig);
354 }
355
356 /* Check if prospective vertex would create overlapping triangle */
357 static int
358 overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
359 {
360 const MIGRATION *ej;
361 RBFNODE *vother[2];
362 int im_rev;
363 /* find shared edge in mesh */
364 for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
365 const RBFNODE *tv = opp_rbf(pv,ej);
366 if (tv == bv0) {
367 im_rev = is_rev_tri(ej->rbfv[0]->invec,
368 ej->rbfv[1]->invec, bv1->invec);
369 break;
370 }
371 if (tv == bv1) {
372 im_rev = is_rev_tri(ej->rbfv[0]->invec,
373 ej->rbfv[1]->invec, bv0->invec);
374 break;
375 }
376 }
377 if (!get_triangles(vother, ej)) /* triangle on same side? */
378 return(0);
379 return(vother[im_rev] != NULL);
380 }
381
382 /* Find context hull vertex to complete triangle (oriented call) */
383 static RBFNODE *
384 find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
385 {
386 FVECT vmid, vejn, vp;
387 RBFNODE *rbf, *rbfbest = NULL;
388 double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
389
390 VSUB(vejn, rbf1->invec, rbf0->invec);
391 VADD(vmid, rbf0->invec, rbf1->invec);
392 if (normalize(vejn) == 0 || normalize(vmid) == 0)
393 return(NULL);
394 /* XXX exhaustive search */
395 /* Find triangle with minimum rotation from perpendicular */
396 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
397 if ((rbf == rbf0) | (rbf == rbf1))
398 continue;
399 tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
400 if (DOT(vp, vmid) <= FTINY)
401 continue; /* wrong orientation */
402 area2 = .25*DOT(vp,vp);
403 VSUB(vp, rbf->invec, rbf0->invec);
404 dprod = -DOT(vp, vejn);
405 VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
406 dprod = DOT(vp, vmid) / VLEN(vp);
407 if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
408 continue; /* found better already */
409 if (overlaps_tri(rbf0, rbf1, rbf))
410 continue; /* overlaps another triangle */
411 rbfbest = rbf;
412 bestdprod = dprod; /* new one to beat */
413 bestarea2 = area2;
414 }
415 return(rbfbest);
416 }
417
418 /* Create new migration edge and grow mesh recursively around it */
419 static void
420 mesh_from_edge(MIGRATION *edge)
421 {
422 MIGRATION *ej0, *ej1;
423 RBFNODE *tvert[2];
424
425 if (edge == NULL)
426 return;
427 /* triangle on either side? */
428 get_triangles(tvert, edge);
429 if (tvert[0] == NULL) { /* grow mesh on right */
430 tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
431 if (tvert[0] != NULL) {
432 if (tvert[0]->ord > edge->rbfv[0]->ord)
433 ej0 = create_migration(edge->rbfv[0], tvert[0]);
434 else
435 ej0 = create_migration(tvert[0], edge->rbfv[0]);
436 if (tvert[0]->ord > edge->rbfv[1]->ord)
437 ej1 = create_migration(edge->rbfv[1], tvert[0]);
438 else
439 ej1 = create_migration(tvert[0], edge->rbfv[1]);
440 mesh_from_edge(ej0);
441 mesh_from_edge(ej1);
442 }
443 } else if (tvert[1] == NULL) { /* grow mesh on left */
444 tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
445 if (tvert[1] != NULL) {
446 if (tvert[1]->ord > edge->rbfv[0]->ord)
447 ej0 = create_migration(edge->rbfv[0], tvert[1]);
448 else
449 ej0 = create_migration(tvert[1], edge->rbfv[0]);
450 if (tvert[1]->ord > edge->rbfv[1]->ord)
451 ej1 = create_migration(edge->rbfv[1], tvert[1]);
452 else
453 ej1 = create_migration(tvert[1], edge->rbfv[1]);
454 mesh_from_edge(ej0);
455 mesh_from_edge(ej1);
456 }
457 }
458 }
459
460 /* Build our triangle mesh from recorded RBFs */
461 void
462 build_mesh(void)
463 {
464 double best2 = M_PI*M_PI;
465 RBFNODE *shrt_edj[2];
466 RBFNODE *rbf0, *rbf1;
467 /* check if isotropic */
468 if (single_plane_incident) {
469 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
470 if (rbf0->next != NULL)
471 create_migration(rbf0, rbf0->next);
472 await_children(nchild);
473 return;
474 }
475 shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */
476 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
477 for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
478 double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
479 if (dist2 < best2) {
480 shrt_edj[0] = rbf0;
481 shrt_edj[1] = rbf1;
482 best2 = dist2;
483 }
484 }
485 if (shrt_edj[0] == NULL) {
486 fprintf(stderr, "%s: Cannot find shortest edge\n", progname);
487 exit(1);
488 }
489 /* build mesh from this edge */
490 if (shrt_edj[0]->ord < shrt_edj[1]->ord)
491 mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
492 else
493 mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
494 /* complete migrations */
495 await_children(nchild);
496 }