ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfmesh.c
Revision: 2.40
Committed: Tue Apr 23 14:30:36 2019 UTC (5 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R3, HEAD
Changes since 2.39: +13 -2 lines
Log Message:
Added warning in cases where number of edges is much less than expected

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfmesh.c,v 2.39 2017/10/06 00:23:09 greg Exp $";
3 #endif
4 /*
5 * Create BSDF advection mesh from radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #if !defined(_WIN32) && !defined(_WIN64)
11 #include <unistd.h>
12 #include <sys/wait.h>
13 #include <sys/mman.h>
14 #endif
15 #define _USE_MATH_DEFINES
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <math.h>
20 #include "bsdfrep.h"
21
22 #ifndef NEIGH_FACT2
23 #define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */
24 #endif
25 /* number of processes to run */
26 int nprocs = 1;
27 /* number of children (-1 in child) */
28 static int nchild = 0;
29
30 /* Compute average DSF value at the given radius from central vector */
31 static double
32 eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad)
33 {
34 const int ninc = 12;
35 const double phinc = 2.*M_PI/ninc;
36 double sum = 0;
37 int n = 0;
38 FVECT tvec;
39 int i;
40 /* compute initial vector */
41 if (output_orient*outvec[2] >= 1.-FTINY) {
42 tvec[0] = tvec[2] = 0;
43 tvec[1] = 1;
44 } else {
45 tvec[0] = tvec[1] = 0;
46 tvec[2] = 1;
47 }
48 geodesic(tvec, outvec, tvec, rad, GEOD_RAD);
49 /* average surrounding DSF */
50 for (i = 0; i < ninc; i++) {
51 if (i) spinvector(tvec, tvec, outvec, phinc);
52 if (tvec[2] > 0 ^ output_orient > 0)
53 continue;
54 sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]);
55 ++n;
56 }
57 if (n < 2) /* should never happen! */
58 return(sum);
59 return(sum/(double)n);
60 }
61
62 /* Estimate single-lobe radius for DSF at the given outgoing angle */
63 static double
64 est_DSFrad(const RBFNODE *rbf, const FVECT outvec)
65 {
66 const double rad_epsilon = 0.01;
67 const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) *
68 COSF(outvec[2]);
69 double inside_rad = rad_epsilon;
70 double outside_rad = 0.5;
71 double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad);
72 double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad);
73 #define interp_rad inside_rad + (outside_rad-inside_rad) * \
74 (DSFtarget-DSFinside) / (DSFoutside-DSFinside)
75 /* Newton's method (sort of) */
76 do {
77 double test_rad = interp_rad;
78 double DSFtest;
79 if ((test_rad >= outside_rad) | (test_rad <= inside_rad))
80 test_rad = .5*(inside_rad + outside_rad);
81 DSFtest = eval_DSFsurround(rbf, outvec, test_rad);
82 if (DSFtest > DSFtarget) {
83 inside_rad = test_rad;
84 DSFinside = DSFtest;
85 } else {
86 outside_rad = test_rad;
87 DSFoutside = DSFtest;
88 }
89 } while (outside_rad-inside_rad > rad_epsilon);
90
91 return(.5*(inside_rad + outside_rad));
92 #undef interp_rad
93 }
94
95 static int
96 dbl_cmp(const void *p1, const void *p2)
97 {
98 double d1 = *(const double *)p1;
99 double d2 = *(const double *)p2;
100
101 if (d1 > d2) return(1);
102 if (d1 < d2) return(-1);
103 return(0);
104 }
105
106 /* Conservative estimate of average BSDF value from current DSF's */
107 static void
108 comp_bsdf_spec(void)
109 {
110 double vmod_sum = 0;
111 double rad_sum = 0;
112 int n = 0;
113 double *cost_list = NULL;
114 double max_cost = 1.;
115 RBFNODE *rbf;
116 FVECT sdv;
117 /* sort by incident altitude */
118 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
119 n++;
120 if (n >= 10)
121 cost_list = (double *)malloc(sizeof(double)*n);
122 if (cost_list == NULL) {
123 bsdf_spec_val = 0;
124 bsdf_spec_rad = 0;
125 return;
126 }
127 n = 0;
128 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
129 cost_list[n++] = rbf->invec[2]*input_orient;
130 qsort(cost_list, n, sizeof(double), dbl_cmp);
131 max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */
132 free(cost_list);
133 n = 0;
134 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
135 double this_rad, cosfact, vest;
136 if (rbf->invec[2]*input_orient > max_cost)
137 continue;
138 sdv[0] = -rbf->invec[0];
139 sdv[1] = -rbf->invec[1];
140 sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1);
141 cosfact = COSF(sdv[2]);
142 this_rad = est_DSFrad(rbf, sdv);
143 vest = eval_rbfrep(rbf, sdv) * cosfact *
144 (2.*M_PI) * this_rad*this_rad;
145 if (vest > rbf->vtotal) /* don't over-estimate energy */
146 vest = rbf->vtotal;
147 vmod_sum += vest / cosfact; /* remove cosine factor */
148 rad_sum += this_rad;
149 ++n;
150 }
151 bsdf_spec_rad = rad_sum/(double)n;
152 bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad);
153 }
154
155 /* Create a new migration holder (sharing memory for multiprocessing) */
156 static MIGRATION *
157 new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
158 {
159 size_t memlen = sizeof(MIGRATION) +
160 sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
161 MIGRATION *newmig;
162 #if defined(_WIN32) || defined(_WIN64)
163 if (nprocs > 1)
164 fprintf(stderr, "%s: warning - multiprocessing not supported\n",
165 progname);
166 nprocs = 1;
167 newmig = (MIGRATION *)malloc(memlen);
168 #else
169 if (nprocs <= 1) { /* single process? */
170 newmig = (MIGRATION *)malloc(memlen);
171 } else { /* else need to share memory */
172 newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
173 MAP_ANON|MAP_SHARED, -1, 0);
174 if ((void *)newmig == MAP_FAILED)
175 newmig = NULL;
176 }
177 #endif
178 if (newmig == NULL) {
179 fprintf(stderr, "%s: cannot allocate new migration\n", progname);
180 exit(1);
181 }
182 newmig->rbfv[0] = from_rbf;
183 newmig->rbfv[1] = to_rbf;
184 /* insert in edge lists */
185 newmig->enxt[0] = from_rbf->ejl;
186 from_rbf->ejl = newmig;
187 newmig->enxt[1] = to_rbf->ejl;
188 to_rbf->ejl = newmig;
189 newmig->next = mig_list; /* push onto global list */
190 return(mig_list = newmig);
191 }
192
193 #if defined(_WIN32) || defined(_WIN64)
194 #define await_children(n) (void)(n)
195 #define run_subprocess() 0
196 #define end_subprocess() (void)0
197 #else
198
199 /* Wait for the specified number of child processes to complete */
200 static void
201 await_children(int n)
202 {
203 int exit_status = 0;
204
205 if (n > nchild)
206 n = nchild;
207 while (n-- > 0) {
208 int status;
209 if (wait(&status) < 0) {
210 fprintf(stderr, "%s: missing child(ren)!\n", progname);
211 nchild = 0;
212 break;
213 }
214 --nchild;
215 if (status) { /* something wrong */
216 if ((status = WEXITSTATUS(status)))
217 exit_status = status;
218 else
219 exit_status += !exit_status;
220 fprintf(stderr, "%s: subprocess died\n", progname);
221 n = nchild; /* wait for the rest */
222 }
223 }
224 if (exit_status)
225 exit(exit_status);
226 }
227
228 /* Start child process if multiprocessing selected */
229 static pid_t
230 run_subprocess(void)
231 {
232 int status;
233 pid_t pid;
234
235 if (nprocs <= 1) /* any children requested? */
236 return(0);
237 await_children(nchild + 1 - nprocs); /* free up child process */
238 if ((pid = fork())) {
239 if (pid < 0) {
240 fprintf(stderr, "%s: cannot fork subprocess\n",
241 progname);
242 await_children(nchild);
243 exit(1);
244 }
245 ++nchild; /* subprocess started */
246 return(pid);
247 }
248 nchild = -1;
249 return(0); /* put child to work */
250 }
251
252 /* If we are in subprocess, call exit */
253 #define end_subprocess() if (nchild < 0) _exit(0); else
254
255 #endif /* ! _WIN32 */
256
257 /* Compute normalized distribution scattering functions for comparison */
258 static void
259 compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1)
260 {
261 const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal;
262 const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal;
263 int x, y;
264 FVECT dv;
265
266 for (x = GRIDRES; x--; )
267 for (y = GRIDRES; y--; ) {
268 ovec_from_pos(dv, x, y); /* cube root (brightness) */
269 dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333);
270 dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333);
271 }
272 }
273
274 /* Compute neighborhood distance-squared (dissimilarity) */
275 static double
276 neighborhood_dist2(int x0, int y0, int x1, int y1)
277 {
278 int rad = GRIDRES>>5;
279 double sum2 = 0.;
280 double d;
281 int p[4];
282 int i, j;
283 /* check radius */
284 p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1;
285 for (i = 4; i--; ) {
286 if (p[i] < rad) rad = p[i];
287 if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i];
288 }
289 for (i = -rad; i <= rad; i++)
290 for (j = -rad; j <= rad; j++) {
291 d = dsf_grid[x0+i][y0+j].val[0] -
292 dsf_grid[x1+i][y1+j].val[1];
293 sum2 += d*d;
294 }
295 return(sum2 / (4*rad*(rad+1) + 1));
296 }
297
298 /* Compute distance between two RBF lobes */
299 double
300 lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2)
301 {
302 FVECT vfrom, vto;
303 double d, res;
304 /* quadratic cost function */
305 ovec_from_pos(vfrom, rbf1->gx, rbf1->gy);
306 ovec_from_pos(vto, rbf2->gx, rbf2->gy);
307 d = Acos(DOT(vfrom, vto));
308 res = d*d;
309 d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad);
310 res += d*d;
311 /* neighborhood difference */
312 res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy,
313 rbf2->gx, rbf2->gy );
314 return(res);
315 }
316
317
318 /* Compute and insert migration along directed edge (may fork child) */
319 static MIGRATION *
320 create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
321 {
322 MIGRATION *newmig;
323 int i, j;
324 /* check if exists already */
325 for (newmig = from_rbf->ejl; newmig != NULL;
326 newmig = nextedge(from_rbf,newmig))
327 if (newmig->rbfv[1] == to_rbf)
328 return(NULL);
329 /* else allocate */
330 #ifdef DEBUG
331 fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ",
332 get_theta180(from_rbf->invec),
333 get_phi360(from_rbf->invec));
334 fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n",
335 get_theta180(to_rbf->invec),
336 get_phi360(to_rbf->invec),
337 from_rbf->nrbf, to_rbf->nrbf);
338 #endif
339 newmig = new_migration(from_rbf, to_rbf);
340 if (run_subprocess())
341 return(newmig); /* child continues */
342
343 /* compute transport plan */
344 compute_nDSFs(from_rbf, to_rbf);
345 plan_transport(newmig);
346
347 for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
348 double nf = rbf_volume(&from_rbf->rbfa[i]);
349 if (nf <= FTINY) continue;
350 nf = from_rbf->vtotal / nf;
351 for (j = to_rbf->nrbf; j--; )
352 mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */
353 }
354 end_subprocess(); /* exit here if subprocess */
355 return(newmig);
356 }
357
358 /* Check if prospective vertex would create overlapping triangle */
359 static int
360 overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
361 {
362 const MIGRATION *ej;
363 RBFNODE *vother[2];
364 int im_rev;
365 /* find shared edge in mesh */
366 for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
367 const RBFNODE *tv = opp_rbf(pv,ej);
368 if (tv == bv0) {
369 im_rev = is_rev_tri(ej->rbfv[0]->invec,
370 ej->rbfv[1]->invec, bv1->invec);
371 break;
372 }
373 if (tv == bv1) {
374 im_rev = is_rev_tri(ej->rbfv[0]->invec,
375 ej->rbfv[1]->invec, bv0->invec);
376 break;
377 }
378 }
379 if (!get_triangles(vother, ej)) /* triangle on same side? */
380 return(0);
381 return(vother[im_rev] != NULL);
382 }
383
384 /* Find convex hull vertex to complete triangle (oriented call) */
385 static RBFNODE *
386 find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
387 {
388 FVECT vmid, vejn, vp;
389 RBFNODE *rbf, *rbfbest = NULL;
390 double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
391
392 VSUB(vejn, rbf1->invec, rbf0->invec);
393 VADD(vmid, rbf0->invec, rbf1->invec);
394 if (normalize(vejn) == 0 || normalize(vmid) == 0)
395 return(NULL);
396 /* XXX exhaustive search */
397 /* Find triangle with minimum rotation from perpendicular */
398 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
399 if ((rbf == rbf0) | (rbf == rbf1))
400 continue;
401 tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
402 if (DOT(vp, vmid) <= FTINY)
403 continue; /* wrong orientation */
404 area2 = .25*DOT(vp,vp);
405 VSUB(vp, rbf->invec, vmid);
406 dprod = -DOT(vp, vejn);
407 VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
408 dprod = DOT(vp, vmid) / VLEN(vp);
409 if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
410 continue; /* found better already */
411 if (overlaps_tri(rbf0, rbf1, rbf))
412 continue; /* overlaps another triangle */
413 rbfbest = rbf;
414 bestdprod = dprod; /* new one to beat */
415 bestarea2 = area2;
416 }
417 return(rbfbest);
418 }
419
420 /* Create new migration edge and grow mesh recursively around it */
421 static void
422 mesh_from_edge(MIGRATION *edge)
423 {
424 MIGRATION *ej0, *ej1;
425 RBFNODE *tvert[2];
426
427 if (edge == NULL)
428 return;
429 /* triangle on either side? */
430 get_triangles(tvert, edge);
431 if (tvert[0] == NULL) { /* grow mesh on right */
432 tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
433 if (tvert[0] != NULL) {
434 if (tvert[0]->ord > edge->rbfv[0]->ord)
435 ej0 = create_migration(edge->rbfv[0], tvert[0]);
436 else
437 ej0 = create_migration(tvert[0], edge->rbfv[0]);
438 if (tvert[0]->ord > edge->rbfv[1]->ord)
439 ej1 = create_migration(edge->rbfv[1], tvert[0]);
440 else
441 ej1 = create_migration(tvert[0], edge->rbfv[1]);
442 mesh_from_edge(ej0);
443 mesh_from_edge(ej1);
444 return;
445 }
446 }
447 if (tvert[1] == NULL) { /* grow mesh on left */
448 tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
449 if (tvert[1] != NULL) {
450 if (tvert[1]->ord > edge->rbfv[0]->ord)
451 ej0 = create_migration(edge->rbfv[0], tvert[1]);
452 else
453 ej0 = create_migration(tvert[1], edge->rbfv[0]);
454 if (tvert[1]->ord > edge->rbfv[1]->ord)
455 ej1 = create_migration(edge->rbfv[1], tvert[1]);
456 else
457 ej1 = create_migration(tvert[1], edge->rbfv[1]);
458 mesh_from_edge(ej0);
459 mesh_from_edge(ej1);
460 }
461 }
462 }
463
464 /* Add normal direction if missing */
465 static void
466 check_normal_incidence(void)
467 {
468 static FVECT norm_vec = {.0, .0, 1.};
469 const int saved_nprocs = nprocs;
470 RBFNODE *near_rbf, *mir_rbf, *rbf;
471 double bestd;
472 int n;
473
474 if (dsf_list == NULL)
475 return; /* XXX should be error? */
476 near_rbf = dsf_list;
477 bestd = input_orient*near_rbf->invec[2];
478 if (single_plane_incident) { /* ordered plane incidence? */
479 if (bestd >= 1.-2.*FTINY)
480 return; /* already have normal */
481 } else {
482 switch (inp_coverage) {
483 case INP_QUAD1:
484 case INP_QUAD2:
485 case INP_QUAD3:
486 case INP_QUAD4:
487 break; /* quadrilateral symmetry? */
488 default:
489 return; /* else we can interpolate */
490 }
491 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
492 const double d = input_orient*rbf->invec[2];
493 if (d >= 1.-2.*FTINY)
494 return; /* seems we have normal */
495 if (d > bestd) {
496 near_rbf = rbf;
497 bestd = d;
498 }
499 }
500 }
501 if (mig_list != NULL) { /* need to be called first */
502 fprintf(stderr, "%s: Late call to check_normal_incidence()\n",
503 progname);
504 exit(1);
505 }
506 #ifdef DEBUG
507 fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n",
508 get_theta180(near_rbf->invec), get_phi360(near_rbf->invec));
509 #endif
510 /* mirror nearest incidence */
511 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1);
512 mir_rbf = (RBFNODE *)malloc(n);
513 if (mir_rbf == NULL)
514 goto memerr;
515 memcpy(mir_rbf, near_rbf, n);
516 mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */
517 mir_rbf->next = NULL;
518 mir_rbf->ejl = NULL;
519 rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y);
520 nprocs = 1; /* compute migration matrix */
521 if (create_migration(mir_rbf, near_rbf) == NULL)
522 exit(1); /* XXX should never happen! */
523 norm_vec[2] = input_orient; /* interpolate normal dist. */
524 rbf = e_advect_rbf(mig_list, norm_vec, 0);
525 nprocs = saved_nprocs; /* final clean-up */
526 free(mir_rbf);
527 free(mig_list);
528 mig_list = near_rbf->ejl = NULL;
529 insert_dsf(rbf); /* insert interpolated normal */
530 return;
531 memerr:
532 fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n",
533 progname);
534 exit(1);
535 }
536
537 /* Build our triangle mesh from recorded RBFs */
538 void
539 build_mesh(void)
540 {
541 int nrbfs = 0, nmigs = 0;
542 double best2 = M_PI*M_PI;
543 RBFNODE *shrt_edj[2];
544 RBFNODE *rbf0, *rbf1;
545 const MIGRATION *ej;
546 /* average specular peak */
547 comp_bsdf_spec();
548 /* add normal if needed */
549 check_normal_incidence();
550 /* check if isotropic */
551 if (single_plane_incident) {
552 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
553 if (rbf0->next != NULL)
554 create_migration(rbf0, rbf0->next);
555 await_children(nchild);
556 return;
557 }
558 shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */
559 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) {
560 for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
561 double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
562 if (dist2 < best2) {
563 shrt_edj[0] = rbf0;
564 shrt_edj[1] = rbf1;
565 best2 = dist2;
566 }
567 }
568 ++nrbfs;
569 }
570 if (shrt_edj[0] == NULL) {
571 fprintf(stderr, "%s: Cannot find shortest edge\n", progname);
572 exit(1);
573 }
574 /* build mesh from this edge */
575 if (shrt_edj[0]->ord < shrt_edj[1]->ord)
576 mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
577 else
578 mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
579 /* count up edges */
580 for (ej = mig_list; ej != NULL; ej = ej->next)
581 ++nmigs;
582 if (nmigs < nrbfs-1) /* did meshing fail? */
583 fprintf(stderr,
584 "%s: warning - %d incident directions but only %d interpolant(s)\n",
585 progname, nrbfs, nmigs);
586 /* complete migrations */
587 await_children(nchild);
588 }