ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfmesh.c
Revision: 2.38
Committed: Tue May 16 20:41:03 2017 UTC (6 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.37: +2 -2 lines
Log Message:
Fixed issue with theta=0 inputs

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfmesh.c,v 2.37 2016/03/06 01:13:17 schorsch Exp $";
3 #endif
4 /*
5 * Create BSDF advection mesh from radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #if !defined(_WIN32) && !defined(_WIN64)
11 #include <unistd.h>
12 #include <sys/wait.h>
13 #include <sys/mman.h>
14 #endif
15 #define _USE_MATH_DEFINES
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <math.h>
20 #include "bsdfrep.h"
21
22 #ifndef NEIGH_FACT2
23 #define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */
24 #endif
25 /* number of processes to run */
26 int nprocs = 1;
27 /* number of children (-1 in child) */
28 static int nchild = 0;
29
30 /* Compute average DSF value at the given radius from central vector */
31 static double
32 eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad)
33 {
34 const int ninc = 12;
35 const double phinc = 2.*M_PI/ninc;
36 double sum = 0;
37 int n = 0;
38 FVECT tvec;
39 int i;
40 /* compute initial vector */
41 if (output_orient*outvec[2] >= 1.-FTINY) {
42 tvec[0] = tvec[2] = 0;
43 tvec[1] = 1;
44 } else {
45 tvec[0] = tvec[1] = 0;
46 tvec[2] = 1;
47 }
48 geodesic(tvec, outvec, tvec, rad, GEOD_RAD);
49 /* average surrounding DSF */
50 for (i = 0; i < ninc; i++) {
51 if (i) spinvector(tvec, tvec, outvec, phinc);
52 if (tvec[2] > 0 ^ output_orient > 0)
53 continue;
54 sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]);
55 ++n;
56 }
57 if (n < 2) /* should never happen! */
58 return(sum);
59 return(sum/(double)n);
60 }
61
62 /* Estimate single-lobe radius for DSF at the given outgoing angle */
63 static double
64 est_DSFrad(const RBFNODE *rbf, const FVECT outvec)
65 {
66 const double rad_epsilon = 0.03;
67 const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) *
68 COSF(outvec[2]);
69 double inside_rad = rad_epsilon;
70 double outside_rad = 0.5;
71 double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad);
72 double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad);
73 #define interp_rad inside_rad + (outside_rad-inside_rad) * \
74 (DSFtarget-DSFinside) / (DSFoutside-DSFinside)
75 /* Newton's method (sort of) */
76 do {
77 double test_rad = interp_rad;
78 double DSFtest;
79 if (test_rad >= outside_rad)
80 return(test_rad);
81 if (test_rad <= inside_rad)
82 return(test_rad*(test_rad>0));
83 DSFtest = eval_DSFsurround(rbf, outvec, test_rad);
84 if (DSFtest > DSFtarget) {
85 inside_rad = test_rad;
86 DSFinside = DSFtest;
87 } else {
88 outside_rad = test_rad;
89 DSFoutside = DSFtest;
90 }
91 if (DSFoutside >= DSFinside)
92 return(test_rad);
93 } while (outside_rad-inside_rad > rad_epsilon);
94 return(interp_rad);
95 #undef interp_rad
96 }
97
98 static int
99 dbl_cmp(const void *p1, const void *p2)
100 {
101 double d1 = *(const double *)p1;
102 double d2 = *(const double *)p2;
103
104 if (d1 > d2) return(1);
105 if (d1 < d2) return(-1);
106 return(0);
107 }
108
109 /* Conservative estimate of average BSDF value from current DSF's */
110 static void
111 comp_bsdf_spec(void)
112 {
113 double vmod_sum = 0;
114 double rad_sum = 0;
115 int n = 0;
116 double *cost_list = NULL;
117 double max_cost = 1.;
118 RBFNODE *rbf;
119 FVECT sdv;
120 /* sort by incident altitude */
121 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
122 n++;
123 if (n >= 10)
124 cost_list = (double *)malloc(sizeof(double)*n);
125 if (cost_list == NULL) {
126 bsdf_spec_val = 0;
127 bsdf_spec_rad = 0;
128 return;
129 }
130 n = 0;
131 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
132 cost_list[n++] = rbf->invec[2]*input_orient;
133 qsort(cost_list, n, sizeof(double), dbl_cmp);
134 max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */
135 free(cost_list);
136 n = 0;
137 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
138 double this_rad, cosfact, vest;
139 if (rbf->invec[2]*input_orient > max_cost)
140 continue;
141 sdv[0] = -rbf->invec[0];
142 sdv[1] = -rbf->invec[1];
143 sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1);
144 cosfact = COSF(sdv[2]);
145 this_rad = est_DSFrad(rbf, sdv);
146 vest = eval_rbfrep(rbf, sdv) * cosfact *
147 (2.*M_PI) * this_rad*this_rad;
148 if (vest > rbf->vtotal) /* don't over-estimate energy */
149 vest = rbf->vtotal;
150 vmod_sum += vest / cosfact; /* remove cosine factor */
151 rad_sum += this_rad;
152 ++n;
153 }
154 bsdf_spec_rad = rad_sum/(double)n;
155 bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad);
156 }
157
158 /* Create a new migration holder (sharing memory for multiprocessing) */
159 static MIGRATION *
160 new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
161 {
162 size_t memlen = sizeof(MIGRATION) +
163 sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
164 MIGRATION *newmig;
165 #if defined(_WIN32) || defined(_WIN64)
166 if (nprocs > 1)
167 fprintf(stderr, "%s: warning - multiprocessing not supported\n",
168 progname);
169 nprocs = 1;
170 newmig = (MIGRATION *)malloc(memlen);
171 #else
172 if (nprocs <= 1) { /* single process? */
173 newmig = (MIGRATION *)malloc(memlen);
174 } else { /* else need to share memory */
175 newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
176 MAP_ANON|MAP_SHARED, -1, 0);
177 if ((void *)newmig == MAP_FAILED)
178 newmig = NULL;
179 }
180 #endif
181 if (newmig == NULL) {
182 fprintf(stderr, "%s: cannot allocate new migration\n", progname);
183 exit(1);
184 }
185 newmig->rbfv[0] = from_rbf;
186 newmig->rbfv[1] = to_rbf;
187 /* insert in edge lists */
188 newmig->enxt[0] = from_rbf->ejl;
189 from_rbf->ejl = newmig;
190 newmig->enxt[1] = to_rbf->ejl;
191 to_rbf->ejl = newmig;
192 newmig->next = mig_list; /* push onto global list */
193 return(mig_list = newmig);
194 }
195
196 #if defined(_WIN32) || defined(_WIN64)
197 #define await_children(n) (void)(n)
198 #define run_subprocess() 0
199 #define end_subprocess() (void)0
200 #else
201
202 /* Wait for the specified number of child processes to complete */
203 static void
204 await_children(int n)
205 {
206 int exit_status = 0;
207
208 if (n > nchild)
209 n = nchild;
210 while (n-- > 0) {
211 int status;
212 if (wait(&status) < 0) {
213 fprintf(stderr, "%s: missing child(ren)!\n", progname);
214 nchild = 0;
215 break;
216 }
217 --nchild;
218 if (status) { /* something wrong */
219 if ((status = WEXITSTATUS(status)))
220 exit_status = status;
221 else
222 exit_status += !exit_status;
223 fprintf(stderr, "%s: subprocess died\n", progname);
224 n = nchild; /* wait for the rest */
225 }
226 }
227 if (exit_status)
228 exit(exit_status);
229 }
230
231 /* Start child process if multiprocessing selected */
232 static pid_t
233 run_subprocess(void)
234 {
235 int status;
236 pid_t pid;
237
238 if (nprocs <= 1) /* any children requested? */
239 return(0);
240 await_children(nchild + 1 - nprocs); /* free up child process */
241 if ((pid = fork())) {
242 if (pid < 0) {
243 fprintf(stderr, "%s: cannot fork subprocess\n",
244 progname);
245 await_children(nchild);
246 exit(1);
247 }
248 ++nchild; /* subprocess started */
249 return(pid);
250 }
251 nchild = -1;
252 return(0); /* put child to work */
253 }
254
255 /* If we are in subprocess, call exit */
256 #define end_subprocess() if (nchild < 0) _exit(0); else
257
258 #endif /* ! _WIN32 */
259
260 /* Compute normalized distribution scattering functions for comparison */
261 static void
262 compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1)
263 {
264 const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal;
265 const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal;
266 int x, y;
267 FVECT dv;
268
269 for (x = GRIDRES; x--; )
270 for (y = GRIDRES; y--; ) {
271 ovec_from_pos(dv, x, y); /* cube root (brightness) */
272 dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333);
273 dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333);
274 }
275 }
276
277 /* Compute neighborhood distance-squared (dissimilarity) */
278 static double
279 neighborhood_dist2(int x0, int y0, int x1, int y1)
280 {
281 int rad = GRIDRES>>5;
282 double sum2 = 0.;
283 double d;
284 int p[4];
285 int i, j;
286 /* check radius */
287 p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1;
288 for (i = 4; i--; ) {
289 if (p[i] < rad) rad = p[i];
290 if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i];
291 }
292 for (i = -rad; i <= rad; i++)
293 for (j = -rad; j <= rad; j++) {
294 d = dsf_grid[x0+i][y0+j].val[0] -
295 dsf_grid[x1+i][y1+j].val[1];
296 sum2 += d*d;
297 }
298 return(sum2 / (4*rad*(rad+1) + 1));
299 }
300
301 /* Compute distance between two RBF lobes */
302 double
303 lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2)
304 {
305 FVECT vfrom, vto;
306 double d, res;
307 /* quadratic cost function */
308 ovec_from_pos(vfrom, rbf1->gx, rbf1->gy);
309 ovec_from_pos(vto, rbf2->gx, rbf2->gy);
310 d = Acos(DOT(vfrom, vto));
311 res = d*d;
312 d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad);
313 res += d*d;
314 /* neighborhood difference */
315 res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy,
316 rbf2->gx, rbf2->gy );
317 return(res);
318 }
319
320
321 /* Compute and insert migration along directed edge (may fork child) */
322 static MIGRATION *
323 create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
324 {
325 MIGRATION *newmig;
326 int i, j;
327 /* check if exists already */
328 for (newmig = from_rbf->ejl; newmig != NULL;
329 newmig = nextedge(from_rbf,newmig))
330 if (newmig->rbfv[1] == to_rbf)
331 return(NULL);
332 /* else allocate */
333 #ifdef DEBUG
334 fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ",
335 get_theta180(from_rbf->invec),
336 get_phi360(from_rbf->invec));
337 fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n",
338 get_theta180(to_rbf->invec),
339 get_phi360(to_rbf->invec),
340 from_rbf->nrbf, to_rbf->nrbf);
341 #endif
342 newmig = new_migration(from_rbf, to_rbf);
343 if (run_subprocess())
344 return(newmig); /* child continues */
345
346 /* compute transport plan */
347 compute_nDSFs(from_rbf, to_rbf);
348 plan_transport(newmig);
349
350 for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
351 double nf = rbf_volume(&from_rbf->rbfa[i]);
352 if (nf <= FTINY) continue;
353 nf = from_rbf->vtotal / nf;
354 for (j = to_rbf->nrbf; j--; )
355 mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */
356 }
357 end_subprocess(); /* exit here if subprocess */
358 return(newmig);
359 }
360
361 /* Check if prospective vertex would create overlapping triangle */
362 static int
363 overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
364 {
365 const MIGRATION *ej;
366 RBFNODE *vother[2];
367 int im_rev;
368 /* find shared edge in mesh */
369 for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
370 const RBFNODE *tv = opp_rbf(pv,ej);
371 if (tv == bv0) {
372 im_rev = is_rev_tri(ej->rbfv[0]->invec,
373 ej->rbfv[1]->invec, bv1->invec);
374 break;
375 }
376 if (tv == bv1) {
377 im_rev = is_rev_tri(ej->rbfv[0]->invec,
378 ej->rbfv[1]->invec, bv0->invec);
379 break;
380 }
381 }
382 if (!get_triangles(vother, ej)) /* triangle on same side? */
383 return(0);
384 return(vother[im_rev] != NULL);
385 }
386
387 /* Find convex hull vertex to complete triangle (oriented call) */
388 static RBFNODE *
389 find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
390 {
391 FVECT vmid, vejn, vp;
392 RBFNODE *rbf, *rbfbest = NULL;
393 double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
394
395 VSUB(vejn, rbf1->invec, rbf0->invec);
396 VADD(vmid, rbf0->invec, rbf1->invec);
397 if (normalize(vejn) == 0 || normalize(vmid) == 0)
398 return(NULL);
399 /* XXX exhaustive search */
400 /* Find triangle with minimum rotation from perpendicular */
401 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
402 if ((rbf == rbf0) | (rbf == rbf1))
403 continue;
404 tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
405 if (DOT(vp, vmid) <= FTINY)
406 continue; /* wrong orientation */
407 area2 = .25*DOT(vp,vp);
408 VSUB(vp, rbf->invec, vmid);
409 dprod = -DOT(vp, vejn);
410 VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
411 dprod = DOT(vp, vmid) / VLEN(vp);
412 if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
413 continue; /* found better already */
414 if (overlaps_tri(rbf0, rbf1, rbf))
415 continue; /* overlaps another triangle */
416 rbfbest = rbf;
417 bestdprod = dprod; /* new one to beat */
418 bestarea2 = area2;
419 }
420 return(rbfbest);
421 }
422
423 /* Create new migration edge and grow mesh recursively around it */
424 static void
425 mesh_from_edge(MIGRATION *edge)
426 {
427 MIGRATION *ej0, *ej1;
428 RBFNODE *tvert[2];
429
430 if (edge == NULL)
431 return;
432 /* triangle on either side? */
433 get_triangles(tvert, edge);
434 if (tvert[0] == NULL) { /* grow mesh on right */
435 tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
436 if (tvert[0] != NULL) {
437 if (tvert[0]->ord > edge->rbfv[0]->ord)
438 ej0 = create_migration(edge->rbfv[0], tvert[0]);
439 else
440 ej0 = create_migration(tvert[0], edge->rbfv[0]);
441 if (tvert[0]->ord > edge->rbfv[1]->ord)
442 ej1 = create_migration(edge->rbfv[1], tvert[0]);
443 else
444 ej1 = create_migration(tvert[0], edge->rbfv[1]);
445 mesh_from_edge(ej0);
446 mesh_from_edge(ej1);
447 return;
448 }
449 }
450 if (tvert[1] == NULL) { /* grow mesh on left */
451 tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
452 if (tvert[1] != NULL) {
453 if (tvert[1]->ord > edge->rbfv[0]->ord)
454 ej0 = create_migration(edge->rbfv[0], tvert[1]);
455 else
456 ej0 = create_migration(tvert[1], edge->rbfv[0]);
457 if (tvert[1]->ord > edge->rbfv[1]->ord)
458 ej1 = create_migration(edge->rbfv[1], tvert[1]);
459 else
460 ej1 = create_migration(tvert[1], edge->rbfv[1]);
461 mesh_from_edge(ej0);
462 mesh_from_edge(ej1);
463 }
464 }
465 }
466
467 /* Add normal direction if missing */
468 static void
469 check_normal_incidence(void)
470 {
471 static FVECT norm_vec = {.0, .0, 1.};
472 const int saved_nprocs = nprocs;
473 RBFNODE *near_rbf, *mir_rbf, *rbf;
474 double bestd;
475 int n;
476
477 if (dsf_list == NULL)
478 return; /* XXX should be error? */
479 near_rbf = dsf_list;
480 bestd = input_orient*near_rbf->invec[2];
481 if (single_plane_incident) { /* ordered plane incidence? */
482 if (bestd >= 1.-2.*FTINY)
483 return; /* already have normal */
484 } else {
485 switch (inp_coverage) {
486 case INP_QUAD1:
487 case INP_QUAD2:
488 case INP_QUAD3:
489 case INP_QUAD4:
490 break; /* quadrilateral symmetry? */
491 default:
492 return; /* else we can interpolate */
493 }
494 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
495 const double d = input_orient*rbf->invec[2];
496 if (d >= 1.-2.*FTINY)
497 return; /* seems we have normal */
498 if (d > bestd) {
499 near_rbf = rbf;
500 bestd = d;
501 }
502 }
503 }
504 if (mig_list != NULL) { /* need to be called first */
505 fprintf(stderr, "%s: Late call to check_normal_incidence()\n",
506 progname);
507 exit(1);
508 }
509 #ifdef DEBUG
510 fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n",
511 get_theta180(near_rbf->invec), get_phi360(near_rbf->invec));
512 #endif
513 /* mirror nearest incidence */
514 n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1);
515 mir_rbf = (RBFNODE *)malloc(n);
516 if (mir_rbf == NULL)
517 goto memerr;
518 memcpy(mir_rbf, near_rbf, n);
519 mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */
520 mir_rbf->next = NULL;
521 mir_rbf->ejl = NULL;
522 rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y);
523 nprocs = 1; /* compute migration matrix */
524 if (create_migration(mir_rbf, near_rbf) == NULL)
525 exit(1); /* XXX should never happen! */
526 norm_vec[2] = input_orient; /* interpolate normal dist. */
527 rbf = e_advect_rbf(mig_list, norm_vec, 0);
528 nprocs = saved_nprocs; /* final clean-up */
529 free(mir_rbf);
530 free(mig_list);
531 mig_list = near_rbf->ejl = NULL;
532 insert_dsf(rbf); /* insert interpolated normal */
533 return;
534 memerr:
535 fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n",
536 progname);
537 exit(1);
538 }
539
540 /* Build our triangle mesh from recorded RBFs */
541 void
542 build_mesh(void)
543 {
544 double best2 = M_PI*M_PI;
545 RBFNODE *shrt_edj[2];
546 RBFNODE *rbf0, *rbf1;
547 /* average specular peak */
548 comp_bsdf_spec();
549 /* add normal if needed */
550 check_normal_incidence();
551 /* check if isotropic */
552 if (single_plane_incident) {
553 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
554 if (rbf0->next != NULL)
555 create_migration(rbf0, rbf0->next);
556 await_children(nchild);
557 return;
558 }
559 shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */
560 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
561 for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
562 double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
563 if (dist2 < best2) {
564 shrt_edj[0] = rbf0;
565 shrt_edj[1] = rbf1;
566 best2 = dist2;
567 }
568 }
569 if (shrt_edj[0] == NULL) {
570 fprintf(stderr, "%s: Cannot find shortest edge\n", progname);
571 exit(1);
572 }
573 /* build mesh from this edge */
574 if (shrt_edj[0]->ord < shrt_edj[1]->ord)
575 mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
576 else
577 mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
578 /* complete migrations */
579 await_children(nchild);
580 }