1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdfmesh.c,v 2.32 2014/08/21 19:31:23 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Create BSDF advection mesh from radial basis functions. |
6 |
* |
7 |
* G. Ward |
8 |
*/ |
9 |
|
10 |
#ifndef _WIN32 |
11 |
#include <unistd.h> |
12 |
#include <sys/wait.h> |
13 |
#include <sys/mman.h> |
14 |
#endif |
15 |
#define _USE_MATH_DEFINES |
16 |
#include <stdio.h> |
17 |
#include <stdlib.h> |
18 |
#include <string.h> |
19 |
#include <math.h> |
20 |
#include "bsdfrep.h" |
21 |
|
22 |
#ifndef NEIGH_FACT2 |
23 |
#define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */ |
24 |
#endif |
25 |
/* number of processes to run */ |
26 |
int nprocs = 1; |
27 |
/* number of children (-1 in child) */ |
28 |
static int nchild = 0; |
29 |
|
30 |
/* Compute average DSF value at the given radius from central vector */ |
31 |
static double |
32 |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) |
33 |
{ |
34 |
const int ninc = 12; |
35 |
const double phinc = 2.*M_PI/ninc; |
36 |
double sum = 0; |
37 |
int n = 0; |
38 |
FVECT tvec; |
39 |
int i; |
40 |
/* compute initial vector */ |
41 |
if (output_orient*outvec[2] >= 1.-FTINY) { |
42 |
tvec[0] = tvec[2] = 0; |
43 |
tvec[1] = 1; |
44 |
} else { |
45 |
tvec[0] = tvec[1] = 0; |
46 |
tvec[2] = 1; |
47 |
} |
48 |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD); |
49 |
/* average surrounding DSF */ |
50 |
for (i = 0; i < ninc; i++) { |
51 |
if (i) spinvector(tvec, tvec, outvec, phinc); |
52 |
if (tvec[2] > 0 ^ output_orient > 0) |
53 |
continue; |
54 |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); |
55 |
++n; |
56 |
} |
57 |
if (n < 2) /* should never happen! */ |
58 |
return(sum); |
59 |
return(sum/(double)n); |
60 |
} |
61 |
|
62 |
/* Estimate single-lobe radius for DSF at the given outgoing angle */ |
63 |
static double |
64 |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
65 |
{ |
66 |
const double rad_epsilon = 0.03; |
67 |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
68 |
COSF(outvec[2]); |
69 |
double inside_rad = rad_epsilon; |
70 |
double outside_rad = 0.5; |
71 |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
72 |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
73 |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
74 |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
75 |
/* Newton's method (sort of) */ |
76 |
do { |
77 |
double test_rad = interp_rad; |
78 |
double DSFtest; |
79 |
if (test_rad >= outside_rad) |
80 |
return(test_rad); |
81 |
if (test_rad <= inside_rad) |
82 |
return(test_rad*(test_rad>0)); |
83 |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
84 |
if (DSFtest > DSFtarget) { |
85 |
inside_rad = test_rad; |
86 |
DSFinside = DSFtest; |
87 |
} else { |
88 |
outside_rad = test_rad; |
89 |
DSFoutside = DSFtest; |
90 |
} |
91 |
if (DSFoutside >= DSFinside) |
92 |
return(test_rad); |
93 |
} while (outside_rad-inside_rad > rad_epsilon); |
94 |
return(interp_rad); |
95 |
#undef interp_rad |
96 |
} |
97 |
|
98 |
/* Compute average BSDF peak from current DSF's */ |
99 |
static void |
100 |
comp_bsdf_spec(void) |
101 |
{ |
102 |
double peak_sum = 0; |
103 |
double rad_sum = 0; |
104 |
int n = 0; |
105 |
RBFNODE *rbf; |
106 |
FVECT sdv; |
107 |
|
108 |
if (dsf_list == NULL) { |
109 |
bsdf_spec_peak = 0; |
110 |
bsdf_spec_rad = 0; |
111 |
return; |
112 |
} |
113 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
114 |
sdv[0] = -rbf->invec[0]; |
115 |
sdv[1] = -rbf->invec[1]; |
116 |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
117 |
peak_sum += eval_rbfrep(rbf, sdv); |
118 |
rad_sum += est_DSFrad(rbf, sdv); |
119 |
++n; |
120 |
} |
121 |
bsdf_spec_peak = peak_sum/(double)n; |
122 |
bsdf_spec_rad = rad_sum/(double)n; |
123 |
} |
124 |
|
125 |
/* Create a new migration holder (sharing memory for multiprocessing) */ |
126 |
static MIGRATION * |
127 |
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
128 |
{ |
129 |
size_t memlen = sizeof(MIGRATION) + |
130 |
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); |
131 |
MIGRATION *newmig; |
132 |
#ifdef _WIN32 |
133 |
if (nprocs > 1) |
134 |
fprintf(stderr, "%s: warning - multiprocessing not supported\n", |
135 |
progname); |
136 |
nprocs = 1; |
137 |
newmig = (MIGRATION *)malloc(memlen); |
138 |
#else |
139 |
if (nprocs <= 1) { /* single process? */ |
140 |
newmig = (MIGRATION *)malloc(memlen); |
141 |
} else { /* else need to share memory */ |
142 |
newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, |
143 |
MAP_ANON|MAP_SHARED, -1, 0); |
144 |
if ((void *)newmig == MAP_FAILED) |
145 |
newmig = NULL; |
146 |
} |
147 |
#endif |
148 |
if (newmig == NULL) { |
149 |
fprintf(stderr, "%s: cannot allocate new migration\n", progname); |
150 |
exit(1); |
151 |
} |
152 |
newmig->rbfv[0] = from_rbf; |
153 |
newmig->rbfv[1] = to_rbf; |
154 |
/* insert in edge lists */ |
155 |
newmig->enxt[0] = from_rbf->ejl; |
156 |
from_rbf->ejl = newmig; |
157 |
newmig->enxt[1] = to_rbf->ejl; |
158 |
to_rbf->ejl = newmig; |
159 |
newmig->next = mig_list; /* push onto global list */ |
160 |
return(mig_list = newmig); |
161 |
} |
162 |
|
163 |
#ifdef _WIN32 |
164 |
#define await_children(n) (void)(n) |
165 |
#define run_subprocess() 0 |
166 |
#define end_subprocess() (void)0 |
167 |
#else |
168 |
|
169 |
/* Wait for the specified number of child processes to complete */ |
170 |
static void |
171 |
await_children(int n) |
172 |
{ |
173 |
int exit_status = 0; |
174 |
|
175 |
if (n > nchild) |
176 |
n = nchild; |
177 |
while (n-- > 0) { |
178 |
int status; |
179 |
if (wait(&status) < 0) { |
180 |
fprintf(stderr, "%s: missing child(ren)!\n", progname); |
181 |
nchild = 0; |
182 |
break; |
183 |
} |
184 |
--nchild; |
185 |
if (status) { /* something wrong */ |
186 |
if ((status = WEXITSTATUS(status))) |
187 |
exit_status = status; |
188 |
else |
189 |
exit_status += !exit_status; |
190 |
fprintf(stderr, "%s: subprocess died\n", progname); |
191 |
n = nchild; /* wait for the rest */ |
192 |
} |
193 |
} |
194 |
if (exit_status) |
195 |
exit(exit_status); |
196 |
} |
197 |
|
198 |
/* Start child process if multiprocessing selected */ |
199 |
static pid_t |
200 |
run_subprocess(void) |
201 |
{ |
202 |
int status; |
203 |
pid_t pid; |
204 |
|
205 |
if (nprocs <= 1) /* any children requested? */ |
206 |
return(0); |
207 |
await_children(nchild + 1 - nprocs); /* free up child process */ |
208 |
if ((pid = fork())) { |
209 |
if (pid < 0) { |
210 |
fprintf(stderr, "%s: cannot fork subprocess\n", |
211 |
progname); |
212 |
await_children(nchild); |
213 |
exit(1); |
214 |
} |
215 |
++nchild; /* subprocess started */ |
216 |
return(pid); |
217 |
} |
218 |
nchild = -1; |
219 |
return(0); /* put child to work */ |
220 |
} |
221 |
|
222 |
/* If we are in subprocess, call exit */ |
223 |
#define end_subprocess() if (nchild < 0) _exit(0); else |
224 |
|
225 |
#endif /* ! _WIN32 */ |
226 |
|
227 |
/* Compute normalized distribution scattering functions for comparison */ |
228 |
static void |
229 |
compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1) |
230 |
{ |
231 |
const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal; |
232 |
const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal; |
233 |
int x, y; |
234 |
FVECT dv; |
235 |
|
236 |
for (x = GRIDRES; x--; ) |
237 |
for (y = GRIDRES; y--; ) { |
238 |
ovec_from_pos(dv, x, y); /* cube root (brightness) */ |
239 |
dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333); |
240 |
dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333); |
241 |
} |
242 |
} |
243 |
|
244 |
/* Compute neighborhood distance-squared (dissimilarity) */ |
245 |
static double |
246 |
neighborhood_dist2(int x0, int y0, int x1, int y1) |
247 |
{ |
248 |
int rad = GRIDRES>>5; |
249 |
double sum2 = 0.; |
250 |
double d; |
251 |
int p[4]; |
252 |
int i, j; |
253 |
/* check radius */ |
254 |
p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; |
255 |
for (i = 4; i--; ) { |
256 |
if (p[i] < rad) rad = p[i]; |
257 |
if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i]; |
258 |
} |
259 |
for (i = -rad; i <= rad; i++) |
260 |
for (j = -rad; j <= rad; j++) { |
261 |
d = dsf_grid[x0+i][y0+j].val[0] - |
262 |
dsf_grid[x1+i][y1+j].val[1]; |
263 |
sum2 += d*d; |
264 |
} |
265 |
return(sum2 / (4*rad*(rad+1) + 1)); |
266 |
} |
267 |
|
268 |
/* Compute distance between two RBF lobes */ |
269 |
double |
270 |
lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) |
271 |
{ |
272 |
FVECT vfrom, vto; |
273 |
double d, res; |
274 |
/* quadratic cost function */ |
275 |
ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); |
276 |
ovec_from_pos(vto, rbf2->gx, rbf2->gy); |
277 |
d = Acos(DOT(vfrom, vto)); |
278 |
res = d*d; |
279 |
d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); |
280 |
res += d*d; |
281 |
/* neighborhood difference */ |
282 |
res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, |
283 |
rbf2->gx, rbf2->gy ); |
284 |
return(res); |
285 |
} |
286 |
|
287 |
|
288 |
/* Compute and insert migration along directed edge (may fork child) */ |
289 |
static MIGRATION * |
290 |
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
291 |
{ |
292 |
MIGRATION *newmig; |
293 |
int i, j; |
294 |
/* check if exists already */ |
295 |
for (newmig = from_rbf->ejl; newmig != NULL; |
296 |
newmig = nextedge(from_rbf,newmig)) |
297 |
if (newmig->rbfv[1] == to_rbf) |
298 |
return(NULL); |
299 |
/* else allocate */ |
300 |
#ifdef DEBUG |
301 |
fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", |
302 |
get_theta180(from_rbf->invec), |
303 |
get_phi360(from_rbf->invec)); |
304 |
fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", |
305 |
get_theta180(to_rbf->invec), |
306 |
get_phi360(to_rbf->invec), |
307 |
from_rbf->nrbf, to_rbf->nrbf); |
308 |
#endif |
309 |
newmig = new_migration(from_rbf, to_rbf); |
310 |
if (run_subprocess()) |
311 |
return(newmig); /* child continues */ |
312 |
|
313 |
/* compute transport plan */ |
314 |
compute_nDSFs(from_rbf, to_rbf); |
315 |
plan_transport(newmig); |
316 |
|
317 |
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ |
318 |
double nf = rbf_volume(&from_rbf->rbfa[i]); |
319 |
if (nf <= FTINY) continue; |
320 |
nf = from_rbf->vtotal / nf; |
321 |
for (j = to_rbf->nrbf; j--; ) |
322 |
mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ |
323 |
} |
324 |
end_subprocess(); /* exit here if subprocess */ |
325 |
return(newmig); |
326 |
} |
327 |
|
328 |
/* Check if prospective vertex would create overlapping triangle */ |
329 |
static int |
330 |
overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) |
331 |
{ |
332 |
const MIGRATION *ej; |
333 |
RBFNODE *vother[2]; |
334 |
int im_rev; |
335 |
/* find shared edge in mesh */ |
336 |
for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { |
337 |
const RBFNODE *tv = opp_rbf(pv,ej); |
338 |
if (tv == bv0) { |
339 |
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
340 |
ej->rbfv[1]->invec, bv1->invec); |
341 |
break; |
342 |
} |
343 |
if (tv == bv1) { |
344 |
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
345 |
ej->rbfv[1]->invec, bv0->invec); |
346 |
break; |
347 |
} |
348 |
} |
349 |
if (!get_triangles(vother, ej)) /* triangle on same side? */ |
350 |
return(0); |
351 |
return(vother[im_rev] != NULL); |
352 |
} |
353 |
|
354 |
/* Find convex hull vertex to complete triangle (oriented call) */ |
355 |
static RBFNODE * |
356 |
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) |
357 |
{ |
358 |
FVECT vmid, vejn, vp; |
359 |
RBFNODE *rbf, *rbfbest = NULL; |
360 |
double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; |
361 |
|
362 |
VSUB(vejn, rbf1->invec, rbf0->invec); |
363 |
VADD(vmid, rbf0->invec, rbf1->invec); |
364 |
if (normalize(vejn) == 0 || normalize(vmid) == 0) |
365 |
return(NULL); |
366 |
/* XXX exhaustive search */ |
367 |
/* Find triangle with minimum rotation from perpendicular */ |
368 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
369 |
if ((rbf == rbf0) | (rbf == rbf1)) |
370 |
continue; |
371 |
tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); |
372 |
if (DOT(vp, vmid) <= FTINY) |
373 |
continue; /* wrong orientation */ |
374 |
area2 = .25*DOT(vp,vp); |
375 |
VSUB(vp, rbf->invec, vmid); |
376 |
dprod = -DOT(vp, vejn); |
377 |
VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ |
378 |
dprod = DOT(vp, vmid) / VLEN(vp); |
379 |
if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) |
380 |
continue; /* found better already */ |
381 |
if (overlaps_tri(rbf0, rbf1, rbf)) |
382 |
continue; /* overlaps another triangle */ |
383 |
rbfbest = rbf; |
384 |
bestdprod = dprod; /* new one to beat */ |
385 |
bestarea2 = area2; |
386 |
} |
387 |
return(rbfbest); |
388 |
} |
389 |
|
390 |
/* Create new migration edge and grow mesh recursively around it */ |
391 |
static void |
392 |
mesh_from_edge(MIGRATION *edge) |
393 |
{ |
394 |
MIGRATION *ej0, *ej1; |
395 |
RBFNODE *tvert[2]; |
396 |
|
397 |
if (edge == NULL) |
398 |
return; |
399 |
/* triangle on either side? */ |
400 |
get_triangles(tvert, edge); |
401 |
if (tvert[0] == NULL) { /* grow mesh on right */ |
402 |
tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); |
403 |
if (tvert[0] != NULL) { |
404 |
if (tvert[0]->ord > edge->rbfv[0]->ord) |
405 |
ej0 = create_migration(edge->rbfv[0], tvert[0]); |
406 |
else |
407 |
ej0 = create_migration(tvert[0], edge->rbfv[0]); |
408 |
if (tvert[0]->ord > edge->rbfv[1]->ord) |
409 |
ej1 = create_migration(edge->rbfv[1], tvert[0]); |
410 |
else |
411 |
ej1 = create_migration(tvert[0], edge->rbfv[1]); |
412 |
mesh_from_edge(ej0); |
413 |
mesh_from_edge(ej1); |
414 |
return; |
415 |
} |
416 |
} |
417 |
if (tvert[1] == NULL) { /* grow mesh on left */ |
418 |
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); |
419 |
if (tvert[1] != NULL) { |
420 |
if (tvert[1]->ord > edge->rbfv[0]->ord) |
421 |
ej0 = create_migration(edge->rbfv[0], tvert[1]); |
422 |
else |
423 |
ej0 = create_migration(tvert[1], edge->rbfv[0]); |
424 |
if (tvert[1]->ord > edge->rbfv[1]->ord) |
425 |
ej1 = create_migration(edge->rbfv[1], tvert[1]); |
426 |
else |
427 |
ej1 = create_migration(tvert[1], edge->rbfv[1]); |
428 |
mesh_from_edge(ej0); |
429 |
mesh_from_edge(ej1); |
430 |
} |
431 |
} |
432 |
} |
433 |
|
434 |
/* Add normal direction if missing */ |
435 |
static void |
436 |
check_normal_incidence(void) |
437 |
{ |
438 |
static FVECT norm_vec = {.0, .0, 1.}; |
439 |
const int saved_nprocs = nprocs; |
440 |
RBFNODE *near_rbf, *mir_rbf, *rbf; |
441 |
double bestd; |
442 |
int n; |
443 |
|
444 |
if (dsf_list == NULL) |
445 |
return; /* XXX should be error? */ |
446 |
near_rbf = dsf_list; |
447 |
bestd = input_orient*near_rbf->invec[2]; |
448 |
if (single_plane_incident) { /* ordered plane incidence? */ |
449 |
if (bestd >= 1.-2.*FTINY) |
450 |
return; /* already have normal */ |
451 |
} else { |
452 |
switch (inp_coverage) { |
453 |
case INP_QUAD1: |
454 |
case INP_QUAD2: |
455 |
case INP_QUAD3: |
456 |
case INP_QUAD4: |
457 |
break; /* quadrilateral symmetry? */ |
458 |
default: |
459 |
return; /* else we can interpolate */ |
460 |
} |
461 |
for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { |
462 |
const double d = input_orient*rbf->invec[2]; |
463 |
if (d >= 1.-2.*FTINY) |
464 |
return; /* seems we have normal */ |
465 |
if (d > bestd) { |
466 |
near_rbf = rbf; |
467 |
bestd = d; |
468 |
} |
469 |
} |
470 |
} |
471 |
if (mig_list != NULL) { /* need to be called first */ |
472 |
fprintf(stderr, "%s: Late call to check_normal_incidence()\n", |
473 |
progname); |
474 |
exit(1); |
475 |
} |
476 |
#ifdef DEBUG |
477 |
fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", |
478 |
get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); |
479 |
#endif |
480 |
/* mirror nearest incidence */ |
481 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); |
482 |
mir_rbf = (RBFNODE *)malloc(n); |
483 |
if (mir_rbf == NULL) |
484 |
goto memerr; |
485 |
memcpy(mir_rbf, near_rbf, n); |
486 |
mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ |
487 |
mir_rbf->next = NULL; |
488 |
mir_rbf->ejl = NULL; |
489 |
rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); |
490 |
nprocs = 1; /* compute migration matrix */ |
491 |
if (create_migration(mir_rbf, near_rbf) == NULL) |
492 |
exit(1); /* XXX should never happen! */ |
493 |
norm_vec[2] = input_orient; /* interpolate normal dist. */ |
494 |
rbf = e_advect_rbf(mig_list, norm_vec, 0); |
495 |
nprocs = saved_nprocs; /* final clean-up */ |
496 |
free(mir_rbf); |
497 |
free(mig_list); |
498 |
mig_list = near_rbf->ejl = NULL; |
499 |
insert_dsf(rbf); /* insert interpolated normal */ |
500 |
return; |
501 |
memerr: |
502 |
fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", |
503 |
progname); |
504 |
exit(1); |
505 |
} |
506 |
|
507 |
/* Build our triangle mesh from recorded RBFs */ |
508 |
void |
509 |
build_mesh(void) |
510 |
{ |
511 |
double best2 = M_PI*M_PI; |
512 |
RBFNODE *shrt_edj[2]; |
513 |
RBFNODE *rbf0, *rbf1; |
514 |
/* average specular peak */ |
515 |
comp_bsdf_spec(); |
516 |
/* add normal if needed */ |
517 |
check_normal_incidence(); |
518 |
/* check if isotropic */ |
519 |
if (single_plane_incident) { |
520 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
521 |
if (rbf0->next != NULL) |
522 |
create_migration(rbf0, rbf0->next); |
523 |
await_children(nchild); |
524 |
return; |
525 |
} |
526 |
shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ |
527 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
528 |
for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { |
529 |
double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); |
530 |
if (dist2 < best2) { |
531 |
shrt_edj[0] = rbf0; |
532 |
shrt_edj[1] = rbf1; |
533 |
best2 = dist2; |
534 |
} |
535 |
} |
536 |
if (shrt_edj[0] == NULL) { |
537 |
fprintf(stderr, "%s: Cannot find shortest edge\n", progname); |
538 |
exit(1); |
539 |
} |
540 |
/* build mesh from this edge */ |
541 |
if (shrt_edj[0]->ord < shrt_edj[1]->ord) |
542 |
mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); |
543 |
else |
544 |
mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); |
545 |
/* complete migrations */ |
546 |
await_children(nchild); |
547 |
} |