#ifndef lint static const char RCSid[] = "$Id: bsdfmesh.c,v 2.32 2014/08/21 19:31:23 greg Exp $"; #endif /* * Create BSDF advection mesh from radial basis functions. * * G. Ward */ #ifndef _WIN32 #include #include #include #endif #define _USE_MATH_DEFINES #include #include #include #include #include "bsdfrep.h" #ifndef NEIGH_FACT2 #define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */ #endif /* number of processes to run */ int nprocs = 1; /* number of children (-1 in child) */ static int nchild = 0; /* Compute average DSF value at the given radius from central vector */ static double eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) { const int ninc = 12; const double phinc = 2.*M_PI/ninc; double sum = 0; int n = 0; FVECT tvec; int i; /* compute initial vector */ if (output_orient*outvec[2] >= 1.-FTINY) { tvec[0] = tvec[2] = 0; tvec[1] = 1; } else { tvec[0] = tvec[1] = 0; tvec[2] = 1; } geodesic(tvec, outvec, tvec, rad, GEOD_RAD); /* average surrounding DSF */ for (i = 0; i < ninc; i++) { if (i) spinvector(tvec, tvec, outvec, phinc); if (tvec[2] > 0 ^ output_orient > 0) continue; sum += eval_rbfrep(rbf, tvec) * output_orient*tvec[2]; ++n; } if (n < 2) /* should never happen! */ return(sum); return(sum/(double)n); } /* Estimate single-lobe radius for DSF at the given outgoing angle */ static double est_DSFrad(const RBFNODE *rbf, const FVECT outvec) { const double rad_epsilon = 0.03; const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * output_orient*outvec[2]; double inside_rad = rad_epsilon; double outside_rad = 0.5; double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); #define interp_rad inside_rad + (outside_rad-inside_rad) * \ (DSFtarget-DSFinside) / (DSFoutside-DSFinside) /* Newton's method (sort of) */ do { double test_rad = interp_rad; double DSFtest; if (test_rad >= outside_rad) return(test_rad); if (test_rad <= inside_rad) return(test_rad*(test_rad>0)); DSFtest = eval_DSFsurround(rbf, outvec, test_rad); if (DSFtest > DSFtarget) { inside_rad = test_rad; DSFinside = DSFtest; } else { outside_rad = test_rad; DSFoutside = DSFtest; } if (DSFoutside >= DSFinside) return(test_rad); } while (outside_rad-inside_rad > rad_epsilon); return(interp_rad); #undef interp_rad } /* Compute average BSDF peak from current DSF's */ static void comp_bsdf_spec(void) { double peak_sum = 0; double rad_sum = 0; int n = 0; RBFNODE *rbf; FVECT sdv; if (dsf_list == NULL) { bsdf_spec_peak = 0; bsdf_spec_rad = 0; return; } for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { sdv[0] = -rbf->invec[0]; sdv[1] = -rbf->invec[1]; sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); peak_sum += eval_rbfrep(rbf, sdv); rad_sum += est_DSFrad(rbf, sdv); ++n; } bsdf_spec_peak = peak_sum/(double)n; bsdf_spec_rad = rad_sum/(double)n; } /* Create a new migration holder (sharing memory for multiprocessing) */ static MIGRATION * new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) { size_t memlen = sizeof(MIGRATION) + sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); MIGRATION *newmig; #ifdef _WIN32 if (nprocs > 1) fprintf(stderr, "%s: warning - multiprocessing not supported\n", progname); nprocs = 1; newmig = (MIGRATION *)malloc(memlen); #else if (nprocs <= 1) { /* single process? */ newmig = (MIGRATION *)malloc(memlen); } else { /* else need to share memory */ newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0); if ((void *)newmig == MAP_FAILED) newmig = NULL; } #endif if (newmig == NULL) { fprintf(stderr, "%s: cannot allocate new migration\n", progname); exit(1); } newmig->rbfv[0] = from_rbf; newmig->rbfv[1] = to_rbf; /* insert in edge lists */ newmig->enxt[0] = from_rbf->ejl; from_rbf->ejl = newmig; newmig->enxt[1] = to_rbf->ejl; to_rbf->ejl = newmig; newmig->next = mig_list; /* push onto global list */ return(mig_list = newmig); } #ifdef _WIN32 #define await_children(n) (void)(n) #define run_subprocess() 0 #define end_subprocess() (void)0 #else /* Wait for the specified number of child processes to complete */ static void await_children(int n) { int exit_status = 0; if (n > nchild) n = nchild; while (n-- > 0) { int status; if (wait(&status) < 0) { fprintf(stderr, "%s: missing child(ren)!\n", progname); nchild = 0; break; } --nchild; if (status) { /* something wrong */ if ((status = WEXITSTATUS(status))) exit_status = status; else exit_status += !exit_status; fprintf(stderr, "%s: subprocess died\n", progname); n = nchild; /* wait for the rest */ } } if (exit_status) exit(exit_status); } /* Start child process if multiprocessing selected */ static pid_t run_subprocess(void) { int status; pid_t pid; if (nprocs <= 1) /* any children requested? */ return(0); await_children(nchild + 1 - nprocs); /* free up child process */ if ((pid = fork())) { if (pid < 0) { fprintf(stderr, "%s: cannot fork subprocess\n", progname); await_children(nchild); exit(1); } ++nchild; /* subprocess started */ return(pid); } nchild = -1; return(0); /* put child to work */ } /* If we are in subprocess, call exit */ #define end_subprocess() if (nchild < 0) _exit(0); else #endif /* ! _WIN32 */ /* Compute normalized distribution scattering functions for comparison */ static void compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1) { const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal; const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal; int x, y; FVECT dv; for (x = GRIDRES; x--; ) for (y = GRIDRES; y--; ) { ovec_from_pos(dv, x, y); /* cube root (brightness) */ dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333); dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333); } } /* Compute neighborhood distance-squared (dissimilarity) */ static double neighborhood_dist2(int x0, int y0, int x1, int y1) { int rad = GRIDRES>>5; double sum2 = 0.; double d; int p[4]; int i, j; /* check radius */ p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; for (i = 4; i--; ) { if (p[i] < rad) rad = p[i]; if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i]; } for (i = -rad; i <= rad; i++) for (j = -rad; j <= rad; j++) { d = dsf_grid[x0+i][y0+j].val[0] - dsf_grid[x1+i][y1+j].val[1]; sum2 += d*d; } return(sum2 / (4*rad*(rad+1) + 1)); } /* Compute distance between two RBF lobes */ double lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) { FVECT vfrom, vto; double d, res; /* quadratic cost function */ ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); ovec_from_pos(vto, rbf2->gx, rbf2->gy); d = Acos(DOT(vfrom, vto)); res = d*d; d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); res += d*d; /* neighborhood difference */ res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, rbf2->gx, rbf2->gy ); return(res); } /* Compute and insert migration along directed edge (may fork child) */ static MIGRATION * create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) { MIGRATION *newmig; int i, j; /* check if exists already */ for (newmig = from_rbf->ejl; newmig != NULL; newmig = nextedge(from_rbf,newmig)) if (newmig->rbfv[1] == to_rbf) return(NULL); /* else allocate */ #ifdef DEBUG fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", get_theta180(from_rbf->invec), get_phi360(from_rbf->invec)); fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", get_theta180(to_rbf->invec), get_phi360(to_rbf->invec), from_rbf->nrbf, to_rbf->nrbf); #endif newmig = new_migration(from_rbf, to_rbf); if (run_subprocess()) return(newmig); /* child continues */ /* compute transport plan */ compute_nDSFs(from_rbf, to_rbf); plan_transport(newmig); for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ double nf = rbf_volume(&from_rbf->rbfa[i]); if (nf <= FTINY) continue; nf = from_rbf->vtotal / nf; for (j = to_rbf->nrbf; j--; ) mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ } end_subprocess(); /* exit here if subprocess */ return(newmig); } /* Check if prospective vertex would create overlapping triangle */ static int overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) { const MIGRATION *ej; RBFNODE *vother[2]; int im_rev; /* find shared edge in mesh */ for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { const RBFNODE *tv = opp_rbf(pv,ej); if (tv == bv0) { im_rev = is_rev_tri(ej->rbfv[0]->invec, ej->rbfv[1]->invec, bv1->invec); break; } if (tv == bv1) { im_rev = is_rev_tri(ej->rbfv[0]->invec, ej->rbfv[1]->invec, bv0->invec); break; } } if (!get_triangles(vother, ej)) /* triangle on same side? */ return(0); return(vother[im_rev] != NULL); } /* Find convex hull vertex to complete triangle (oriented call) */ static RBFNODE * find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) { FVECT vmid, vejn, vp; RBFNODE *rbf, *rbfbest = NULL; double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; VSUB(vejn, rbf1->invec, rbf0->invec); VADD(vmid, rbf0->invec, rbf1->invec); if (normalize(vejn) == 0 || normalize(vmid) == 0) return(NULL); /* XXX exhaustive search */ /* Find triangle with minimum rotation from perpendicular */ for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { if ((rbf == rbf0) | (rbf == rbf1)) continue; tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); if (DOT(vp, vmid) <= FTINY) continue; /* wrong orientation */ area2 = .25*DOT(vp,vp); VSUB(vp, rbf->invec, vmid); dprod = -DOT(vp, vejn); VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ dprod = DOT(vp, vmid) / VLEN(vp); if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) continue; /* found better already */ if (overlaps_tri(rbf0, rbf1, rbf)) continue; /* overlaps another triangle */ rbfbest = rbf; bestdprod = dprod; /* new one to beat */ bestarea2 = area2; } return(rbfbest); } /* Create new migration edge and grow mesh recursively around it */ static void mesh_from_edge(MIGRATION *edge) { MIGRATION *ej0, *ej1; RBFNODE *tvert[2]; if (edge == NULL) return; /* triangle on either side? */ get_triangles(tvert, edge); if (tvert[0] == NULL) { /* grow mesh on right */ tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); if (tvert[0] != NULL) { if (tvert[0]->ord > edge->rbfv[0]->ord) ej0 = create_migration(edge->rbfv[0], tvert[0]); else ej0 = create_migration(tvert[0], edge->rbfv[0]); if (tvert[0]->ord > edge->rbfv[1]->ord) ej1 = create_migration(edge->rbfv[1], tvert[0]); else ej1 = create_migration(tvert[0], edge->rbfv[1]); mesh_from_edge(ej0); mesh_from_edge(ej1); return; } } if (tvert[1] == NULL) { /* grow mesh on left */ tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); if (tvert[1] != NULL) { if (tvert[1]->ord > edge->rbfv[0]->ord) ej0 = create_migration(edge->rbfv[0], tvert[1]); else ej0 = create_migration(tvert[1], edge->rbfv[0]); if (tvert[1]->ord > edge->rbfv[1]->ord) ej1 = create_migration(edge->rbfv[1], tvert[1]); else ej1 = create_migration(tvert[1], edge->rbfv[1]); mesh_from_edge(ej0); mesh_from_edge(ej1); } } } /* Add normal direction if missing */ static void check_normal_incidence(void) { static FVECT norm_vec = {.0, .0, 1.}; const int saved_nprocs = nprocs; RBFNODE *near_rbf, *mir_rbf, *rbf; double bestd; int n; if (dsf_list == NULL) return; /* XXX should be error? */ near_rbf = dsf_list; bestd = input_orient*near_rbf->invec[2]; if (single_plane_incident) { /* ordered plane incidence? */ if (bestd >= 1.-2.*FTINY) return; /* already have normal */ } else { switch (inp_coverage) { case INP_QUAD1: case INP_QUAD2: case INP_QUAD3: case INP_QUAD4: break; /* quadrilateral symmetry? */ default: return; /* else we can interpolate */ } for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { const double d = input_orient*rbf->invec[2]; if (d >= 1.-2.*FTINY) return; /* seems we have normal */ if (d > bestd) { near_rbf = rbf; bestd = d; } } } if (mig_list != NULL) { /* need to be called first */ fprintf(stderr, "%s: Late call to check_normal_incidence()\n", progname); exit(1); } #ifdef DEBUG fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); #endif /* mirror nearest incidence */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); mir_rbf = (RBFNODE *)malloc(n); if (mir_rbf == NULL) goto memerr; memcpy(mir_rbf, near_rbf, n); mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ mir_rbf->next = NULL; mir_rbf->ejl = NULL; rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); nprocs = 1; /* compute migration matrix */ if (create_migration(mir_rbf, near_rbf) == NULL) exit(1); /* XXX should never happen! */ norm_vec[2] = input_orient; /* interpolate normal dist. */ rbf = e_advect_rbf(mig_list, norm_vec, 0); nprocs = saved_nprocs; /* final clean-up */ free(mir_rbf); free(mig_list); mig_list = near_rbf->ejl = NULL; insert_dsf(rbf); /* insert interpolated normal */ return; memerr: fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", progname); exit(1); } /* Build our triangle mesh from recorded RBFs */ void build_mesh(void) { double best2 = M_PI*M_PI; RBFNODE *shrt_edj[2]; RBFNODE *rbf0, *rbf1; /* average specular peak */ comp_bsdf_spec(); /* add normal if needed */ check_normal_incidence(); /* check if isotropic */ if (single_plane_incident) { for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) if (rbf0->next != NULL) create_migration(rbf0, rbf0->next); await_children(nchild); return; } shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); if (dist2 < best2) { shrt_edj[0] = rbf0; shrt_edj[1] = rbf1; best2 = dist2; } } if (shrt_edj[0] == NULL) { fprintf(stderr, "%s: Cannot find shortest edge\n", progname); exit(1); } /* build mesh from this edge */ if (shrt_edj[0]->ord < shrt_edj[1]->ord) mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); else mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); /* complete migrations */ await_children(nchild); }