#ifndef lint static const char RCSid[] = "$Id: bsdfmesh.c,v 2.16 2014/02/19 05:16:06 greg Exp $"; #endif /* * Create BSDF advection mesh from radial basis functions. * * G. Ward */ #ifndef _WIN32 #include #include #include #endif #define _USE_MATH_DEFINES #include #include #include #include #include "bsdfrep.h" /* number of processes to run */ int nprocs = 1; /* number of children (-1 in child) */ static int nchild = 0; typedef struct { int nrows, ncols; /* array size (matches migration) */ float *price; /* migration prices */ short *sord; /* sort for each row, low to high */ float *prow; /* current price row */ } PRICEMAT; /* sorted pricing matrix */ #define pricerow(p,i) ((p)->price + (i)*(p)->ncols) #define psortrow(p,i) ((p)->sord + (i)*(p)->ncols) /* Create a new migration holder (sharing memory for multiprocessing) */ static MIGRATION * new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) { size_t memlen = sizeof(MIGRATION) + sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); MIGRATION *newmig; #ifdef _WIN32 if (nprocs > 1) fprintf(stderr, "%s: warning - multiprocessing not supported\n", progname); nprocs = 1; newmig = (MIGRATION *)malloc(memlen); #else if (nprocs <= 1) { /* single process? */ newmig = (MIGRATION *)malloc(memlen); } else { /* else need to share memory */ newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0); if ((void *)newmig == MAP_FAILED) newmig = NULL; } #endif if (newmig == NULL) { fprintf(stderr, "%s: cannot allocate new migration\n", progname); exit(1); } newmig->rbfv[0] = from_rbf; newmig->rbfv[1] = to_rbf; /* insert in edge lists */ newmig->enxt[0] = from_rbf->ejl; from_rbf->ejl = newmig; newmig->enxt[1] = to_rbf->ejl; to_rbf->ejl = newmig; newmig->next = mig_list; /* push onto global list */ return(mig_list = newmig); } #ifdef _WIN32 #define await_children(n) (void)(n) #define run_subprocess() 0 #define end_subprocess() (void)0 #else /* Wait for the specified number of child processes to complete */ static void await_children(int n) { int exit_status = 0; if (n > nchild) n = nchild; while (n-- > 0) { int status; if (wait(&status) < 0) { fprintf(stderr, "%s: missing child(ren)!\n", progname); nchild = 0; break; } --nchild; if (status) { /* something wrong */ if ((status = WEXITSTATUS(status))) exit_status = status; else exit_status += !exit_status; fprintf(stderr, "%s: subprocess died\n", progname); n = nchild; /* wait for the rest */ } } if (exit_status) exit(exit_status); } /* Start child process if multiprocessing selected */ static pid_t run_subprocess(void) { int status; pid_t pid; if (nprocs <= 1) /* any children requested? */ return(0); await_children(nchild + 1 - nprocs); /* free up child process */ if ((pid = fork())) { if (pid < 0) { fprintf(stderr, "%s: cannot fork subprocess\n", progname); await_children(nchild); exit(1); } ++nchild; /* subprocess started */ return(pid); } nchild = -1; return(0); /* put child to work */ } /* If we are in subprocess, call exit */ #define end_subprocess() if (nchild < 0) _exit(0); else #endif /* ! _WIN32 */ /* Comparison routine needed for sorting price row */ static int msrt_cmp(void *b, const void *p1, const void *p2) { PRICEMAT *pm = (PRICEMAT *)b; float c1 = pm->prow[*(const short *)p1]; float c2 = pm->prow[*(const short *)p2]; if (c1 > c2) return(1); if (c1 < c2) return(-1); return(0); } /* Compute (and allocate) migration price matrix for optimization */ static void price_routes(PRICEMAT *pm, const RBFNODE *from_rbf, const RBFNODE *to_rbf) { FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); int i, j; pm->nrows = from_rbf->nrbf; pm->ncols = to_rbf->nrbf; pm->price = (float *)malloc(sizeof(float) * pm->nrows*pm->ncols); pm->sord = (short *)malloc(sizeof(short) * pm->nrows*pm->ncols); if ((pm->price == NULL) | (pm->sord == NULL) | (vto == NULL)) { fprintf(stderr, "%s: Out of memory in migration_costs()\n", progname); exit(1); } for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */ ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); for (i = from_rbf->nrbf; i--; ) { const double from_ang = R2ANG(from_rbf->rbfa[i].crad); FVECT vfrom; short *srow; ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); pm->prow = pricerow(pm,i); srow = psortrow(pm,i); for (j = to_rbf->nrbf; j--; ) { double d; /* quadratic cost function */ d = DOT(vfrom, vto[j]); d = (d >= 1.) ? .0 : acos(d); pm->prow[j] = d*d; d = R2ANG(to_rbf->rbfa[j].crad) - from_ang; pm->prow[j] += d*d; srow[j] = j; } qsort_r(srow, pm->ncols, sizeof(short), pm, &msrt_cmp); } free(vto); } /* Free price matrix */ static void free_routes(PRICEMAT *pm) { free(pm->price); pm->price = NULL; free(pm->sord); pm->sord = NULL; } /* Compute minimum (optimistic) cost for moving the given source material */ static double min_cost(double amt2move, const double *avail, const PRICEMAT *pm, int s) { const short *srow = psortrow(pm,s); const float *prow = pricerow(pm,s); double total_cost = 0; int j; /* move cheapest first */ for (j = 0; (j < pm->ncols) & (amt2move > FTINY); j++) { int d = srow[j]; double amt = (amt2move < avail[d]) ? amt2move : avail[d]; total_cost += amt * prow[d]; amt2move -= amt; } return(total_cost); } /* Compare entries by moving price */ static int rmovcmp(void *b, const void *p1, const void *p2) { PRICEMAT *pm = (PRICEMAT *)b; const short *ij1 = (const short *)p1; const short *ij2 = (const short *)p2; float price_diff; if (ij1[1] < 0) return(ij2[1] >= 0); if (ij2[1] < 0) return(-1); price_diff = pricerow(pm,ij1[0])[ij1[1]] - pricerow(pm,ij2[0])[ij2[1]]; if (price_diff > 0) return(1); if (price_diff < 0) return(-1); return(0); } /* Take a step in migration by choosing reasonable bucket to transfer */ static double migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, PRICEMAT *pm) { const int max2check = 100; const double maxamt = 1./(double)pm->ncols; const double minamt = maxamt*1e-4; double *src_cost; short (*rord)[2]; struct { int s, d; /* source and destination */ double price; /* price estimate per amount moved */ double amt; /* amount we can move */ } cur, best; int r2check, i, ri; /* * Check cheapest available routes only -- a higher adjusted * destination price implies that another source is closer, so * we can hold off considering more expensive options until * some other (hopefully better) moves have been made. */ /* most promising row order */ rord = (short (*)[2])malloc(sizeof(short)*2*pm->nrows); if (rord == NULL) goto memerr; for (ri = pm->nrows; ri--; ) { rord[ri][0] = ri; rord[ri][1] = -1; if (src_rem[ri] <= minamt) /* enough source material? */ continue; for (i = 0; i < pm->ncols; i++) if (dst_rem[ rord[ri][1] = psortrow(pm,ri)[i] ] > minamt) break; if (i >= pm->ncols) { /* moved all we can? */ free(rord); return(.0); } } if (pm->nrows > max2check) /* sort if too many sources */ qsort_r(rord, pm->nrows, sizeof(short)*2, pm, &rmovcmp); /* allocate cost array */ src_cost = (double *)malloc(sizeof(double)*pm->nrows); if (src_cost == NULL) goto memerr; for (i = pm->nrows; i--; ) /* starting costs for diff. */ src_cost[i] = min_cost(src_rem[i], dst_rem, pm, i); /* find best source & dest. */ best.s = best.d = -1; best.price = FHUGE; best.amt = 0; if ((r2check = pm->nrows) > max2check) r2check = max2check; /* put a limit on search */ for (ri = 0; ri < r2check; ri++) { /* check each source row */ double cost_others = 0; cur.s = rord[ri][0]; if ((cur.d = rord[ri][1]) < 0 || (cur.price = pricerow(pm,cur.s)[cur.d]) >= best.price) { if (pm->nrows > max2check) break; /* sorted end */ continue; /* else skip this one */ } cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? src_rem[cur.s] : dst_rem[cur.d]; /* don't just leave smidgen */ if (cur.amt > maxamt*1.02) cur.amt = maxamt; dst_rem[cur.d] -= cur.amt; /* add up opportunity costs */ for (i = pm->nrows; i--; ) if (i != cur.s) cost_others += min_cost(src_rem[i], dst_rem, pm, i) - src_cost[i]; dst_rem[cur.d] += cur.amt; /* undo trial move */ cur.price += cost_others/cur.amt; /* adjust effective price */ if (cur.price < best.price) /* are we better than best? */ best = cur; } free(src_cost); /* clean up */ free(rord); if ((best.s < 0) | (best.d < 0)) /* nothing left to move? */ return(.0); /* else make the actual move */ mtx_coef(mig,best.s,best.d) += best.amt; src_rem[best.s] -= best.amt; dst_rem[best.d] -= best.amt; return(best.amt); memerr: fprintf(stderr, "%s: Out of memory in migration_step()\n", progname); exit(1); } /* Compute and insert migration along directed edge (may fork child) */ static MIGRATION * create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) { const double end_thresh = 5e-6; PRICEMAT pmtx; MIGRATION *newmig; double *src_rem, *dst_rem; double total_rem = 1., move_amt; int i, j; /* check if exists already */ for (newmig = from_rbf->ejl; newmig != NULL; newmig = nextedge(from_rbf,newmig)) if (newmig->rbfv[1] == to_rbf) return(NULL); /* else allocate */ #ifdef DEBUG fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", get_theta180(from_rbf->invec), get_phi360(from_rbf->invec)); fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", get_theta180(to_rbf->invec), get_phi360(to_rbf->invec), from_rbf->nrbf, to_rbf->nrbf); #endif newmig = new_migration(from_rbf, to_rbf); if (run_subprocess()) return(newmig); /* child continues */ price_routes(&pmtx, from_rbf, to_rbf); src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); if ((src_rem == NULL) | (dst_rem == NULL)) { fprintf(stderr, "%s: Out of memory in create_migration()\n", progname); exit(1); } /* starting quantities */ memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); for (i = from_rbf->nrbf; i--; ) src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; for (j = to_rbf->nrbf; j--; ) dst_rem[j] = rbf_volume(&to_rbf->rbfa[j]) / to_rbf->vtotal; do { /* move a bit at a time */ move_amt = migration_step(newmig, src_rem, dst_rem, &pmtx); total_rem -= move_amt; } while ((total_rem > end_thresh) & (move_amt > 0)); for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ double nf = rbf_volume(&from_rbf->rbfa[i]); if (nf <= FTINY) continue; nf = from_rbf->vtotal / nf; for (j = to_rbf->nrbf; j--; ) mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ } end_subprocess(); /* exit here if subprocess */ free_routes(&pmtx); /* free working arrays */ free(src_rem); free(dst_rem); return(newmig); } /* Check if prospective vertex would create overlapping triangle */ static int overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) { const MIGRATION *ej; RBFNODE *vother[2]; int im_rev; /* find shared edge in mesh */ for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { const RBFNODE *tv = opp_rbf(pv,ej); if (tv == bv0) { im_rev = is_rev_tri(ej->rbfv[0]->invec, ej->rbfv[1]->invec, bv1->invec); break; } if (tv == bv1) { im_rev = is_rev_tri(ej->rbfv[0]->invec, ej->rbfv[1]->invec, bv0->invec); break; } } if (!get_triangles(vother, ej)) /* triangle on same side? */ return(0); return(vother[im_rev] != NULL); } /* Find convex hull vertex to complete triangle (oriented call) */ static RBFNODE * find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) { FVECT vmid, vejn, vp; RBFNODE *rbf, *rbfbest = NULL; double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; VSUB(vejn, rbf1->invec, rbf0->invec); VADD(vmid, rbf0->invec, rbf1->invec); if (normalize(vejn) == 0 || normalize(vmid) == 0) return(NULL); /* XXX exhaustive search */ /* Find triangle with minimum rotation from perpendicular */ for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { if ((rbf == rbf0) | (rbf == rbf1)) continue; tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); if (DOT(vp, vmid) <= FTINY) continue; /* wrong orientation */ area2 = .25*DOT(vp,vp); VSUB(vp, rbf->invec, vmid); dprod = -DOT(vp, vejn); VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ dprod = DOT(vp, vmid) / VLEN(vp); if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) continue; /* found better already */ if (overlaps_tri(rbf0, rbf1, rbf)) continue; /* overlaps another triangle */ rbfbest = rbf; bestdprod = dprod; /* new one to beat */ bestarea2 = area2; } return(rbfbest); } /* Create new migration edge and grow mesh recursively around it */ static void mesh_from_edge(MIGRATION *edge) { MIGRATION *ej0, *ej1; RBFNODE *tvert[2]; if (edge == NULL) return; /* triangle on either side? */ get_triangles(tvert, edge); if (tvert[0] == NULL) { /* grow mesh on right */ tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); if (tvert[0] != NULL) { if (tvert[0]->ord > edge->rbfv[0]->ord) ej0 = create_migration(edge->rbfv[0], tvert[0]); else ej0 = create_migration(tvert[0], edge->rbfv[0]); if (tvert[0]->ord > edge->rbfv[1]->ord) ej1 = create_migration(edge->rbfv[1], tvert[0]); else ej1 = create_migration(tvert[0], edge->rbfv[1]); mesh_from_edge(ej0); mesh_from_edge(ej1); } } else if (tvert[1] == NULL) { /* grow mesh on left */ tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); if (tvert[1] != NULL) { if (tvert[1]->ord > edge->rbfv[0]->ord) ej0 = create_migration(edge->rbfv[0], tvert[1]); else ej0 = create_migration(tvert[1], edge->rbfv[0]); if (tvert[1]->ord > edge->rbfv[1]->ord) ej1 = create_migration(edge->rbfv[1], tvert[1]); else ej1 = create_migration(tvert[1], edge->rbfv[1]); mesh_from_edge(ej0); mesh_from_edge(ej1); } } } /* Add normal direction if missing */ static void check_normal_incidence(void) { static const FVECT norm_vec = {.0, .0, 1.}; const int saved_nprocs = nprocs; RBFNODE *near_rbf, *mir_rbf, *rbf; double bestd; int n; if (dsf_list == NULL) return; /* XXX should be error? */ near_rbf = dsf_list; bestd = input_orient*near_rbf->invec[2]; if (single_plane_incident) { /* ordered plane incidence? */ if (bestd >= 1.-2.*FTINY) return; /* already have normal */ } else { switch (inp_coverage) { case INP_QUAD1: case INP_QUAD2: case INP_QUAD3: case INP_QUAD4: break; /* quadrilateral symmetry? */ default: return; /* else we can interpolate */ } for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { const double d = input_orient*rbf->invec[2]; if (d >= 1.-2.*FTINY) return; /* seems we have normal */ if (d > bestd) { near_rbf = rbf; bestd = d; } } } if (mig_list != NULL) { /* need to be called first */ fprintf(stderr, "%s: Late call to check_normal_incidence()\n", progname); exit(1); } #ifdef DEBUG fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); #endif /* mirror nearest incidence */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); mir_rbf = (RBFNODE *)malloc(n); if (mir_rbf == NULL) goto memerr; memcpy(mir_rbf, near_rbf, n); mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ mir_rbf->next = NULL; rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); nprocs = 1; /* compute migration matrix */ if (mig_list != create_migration(mir_rbf, near_rbf)) exit(1); /* XXX should never happen! */ /* interpolate normal dist. */ rbf = e_advect_rbf(mig_list, norm_vec, 2*near_rbf->nrbf); nprocs = saved_nprocs; /* final clean-up */ free(mir_rbf); free(mig_list); mig_list = near_rbf->ejl = NULL; insert_dsf(rbf); /* insert interpolated normal */ return; memerr: fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", progname); exit(1); } /* Build our triangle mesh from recorded RBFs */ void build_mesh(void) { double best2 = M_PI*M_PI; RBFNODE *shrt_edj[2]; RBFNODE *rbf0, *rbf1; /* add normal if needed */ check_normal_incidence(); /* check if isotropic */ if (single_plane_incident) { for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) if (rbf0->next != NULL) create_migration(rbf0, rbf0->next); await_children(nchild); return; } shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); if (dist2 < best2) { shrt_edj[0] = rbf0; shrt_edj[1] = rbf1; best2 = dist2; } } if (shrt_edj[0] == NULL) { fprintf(stderr, "%s: Cannot find shortest edge\n", progname); exit(1); } /* build mesh from this edge */ if (shrt_edj[0]->ord < shrt_edj[1]->ord) mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); else mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); /* complete migrations */ await_children(nchild); }