ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfmesh.c
Revision: 2.1
Committed: Fri Oct 19 04:14:29 2012 UTC (11 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Log Message:
Broke pabopto2xml into pabopto2bsdf and bsdf2ttree

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * Create BSDF advection mesh from radial basis functions.
6 *
7 * G. Ward
8 */
9
10 #ifndef _WIN32
11 #include <unistd.h>
12 #include <sys/wait.h>
13 #include <sys/mman.h>
14 #endif
15 #define _USE_MATH_DEFINES
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <math.h>
20 #include "bsdfrep.h"
21 /* number of processes to run */
22 int nprocs = 1;
23 /* number of children (-1 in child) */
24 static int nchild = 0;
25
26 /* Compute (and allocate) migration price matrix for optimization */
27 static float *
28 price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf)
29 {
30 float *pmtx = (float *)malloc(sizeof(float) *
31 from_rbf->nrbf * to_rbf->nrbf);
32 FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf);
33 int i, j;
34
35 if ((pmtx == NULL) | (vto == NULL)) {
36 fprintf(stderr, "%s: Out of memory in migration_costs()\n",
37 progname);
38 exit(1);
39 }
40 for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */
41 ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy);
42
43 for (i = from_rbf->nrbf; i--; ) {
44 const double from_ang = R2ANG(from_rbf->rbfa[i].crad);
45 FVECT vfrom;
46 ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy);
47 for (j = to_rbf->nrbf; j--; )
48 pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) +
49 fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang);
50 }
51 free(vto);
52 return(pmtx);
53 }
54
55 /* Comparison routine needed for sorting price row */
56 static const float *price_arr;
57 static int
58 msrt_cmp(const void *p1, const void *p2)
59 {
60 float c1 = price_arr[*(const int *)p1];
61 float c2 = price_arr[*(const int *)p2];
62
63 if (c1 > c2) return(1);
64 if (c1 < c2) return(-1);
65 return(0);
66 }
67
68 /* Compute minimum (optimistic) cost for moving the given source material */
69 static double
70 min_cost(double amt2move, const double *avail, const float *price, int n)
71 {
72 static int *price_sort = NULL;
73 static int n_alloc = 0;
74 double total_cost = 0;
75 int i;
76
77 if (amt2move <= FTINY) /* pre-emptive check */
78 return(0.);
79 if (n > n_alloc) { /* (re)allocate sort array */
80 if (n_alloc) free(price_sort);
81 price_sort = (int *)malloc(sizeof(int)*n);
82 if (price_sort == NULL) {
83 fprintf(stderr, "%s: Out of memory in min_cost()\n",
84 progname);
85 exit(1);
86 }
87 n_alloc = n;
88 }
89 for (i = n; i--; )
90 price_sort[i] = i;
91 price_arr = price;
92 qsort(price_sort, n, sizeof(int), &msrt_cmp);
93 /* move cheapest first */
94 for (i = 0; i < n && amt2move > FTINY; i++) {
95 int d = price_sort[i];
96 double amt = (amt2move < avail[d]) ? amt2move : avail[d];
97
98 total_cost += amt * price[d];
99 amt2move -= amt;
100 }
101 return(total_cost);
102 }
103
104 /* Take a step in migration by choosing optimal bucket to transfer */
105 static double
106 migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx)
107 {
108 const double maxamt = .1;
109 const double minamt = maxamt*.0001;
110 static double *src_cost = NULL;
111 static int n_alloc = 0;
112 struct {
113 int s, d; /* source and destination */
114 double price; /* price estimate per amount moved */
115 double amt; /* amount we can move */
116 } cur, best;
117 int i;
118
119 if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */
120 if (n_alloc)
121 free(src_cost);
122 src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig));
123 if (src_cost == NULL) {
124 fprintf(stderr, "%s: Out of memory in migration_step()\n",
125 progname);
126 exit(1);
127 }
128 n_alloc = mtx_nrows(mig);
129 }
130 for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */
131 src_cost[i] = min_cost(src_rem[i], dst_rem,
132 pmtx+i*mtx_ncols(mig), mtx_ncols(mig));
133
134 /* find best source & dest. */
135 best.s = best.d = -1; best.price = FHUGE; best.amt = 0;
136 for (cur.s = mtx_nrows(mig); cur.s--; ) {
137 const float *price = pmtx + cur.s*mtx_ncols(mig);
138 double cost_others = 0;
139 if (src_rem[cur.s] < minamt)
140 continue;
141 cur.d = -1; /* examine cheapest dest. */
142 for (i = mtx_ncols(mig); i--; )
143 if (dst_rem[i] > minamt &&
144 (cur.d < 0 || price[i] < price[cur.d]))
145 cur.d = i;
146 if (cur.d < 0)
147 return(.0);
148 if ((cur.price = price[cur.d]) >= best.price)
149 continue; /* no point checking further */
150 cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ?
151 src_rem[cur.s] : dst_rem[cur.d];
152 if (cur.amt > maxamt) cur.amt = maxamt;
153 dst_rem[cur.d] -= cur.amt; /* add up differential costs */
154 for (i = mtx_nrows(mig); i--; )
155 if (i != cur.s)
156 cost_others += min_cost(src_rem[i], dst_rem,
157 price, mtx_ncols(mig))
158 - src_cost[i];
159 dst_rem[cur.d] += cur.amt; /* undo trial move */
160 cur.price += cost_others/cur.amt; /* adjust effective price */
161 if (cur.price < best.price) /* are we better than best? */
162 best = cur;
163 }
164 if ((best.s < 0) | (best.d < 0))
165 return(.0);
166 /* make the actual move */
167 mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt;
168 src_rem[best.s] -= best.amt;
169 dst_rem[best.d] -= best.amt;
170 return(best.amt);
171 }
172
173 #ifdef DEBUG
174 static char *
175 thetaphi(const FVECT v)
176 {
177 static char buf[128];
178 double theta, phi;
179
180 theta = 180./M_PI*acos(v[2]);
181 phi = 180./M_PI*atan2(v[1],v[0]);
182 sprintf(buf, "(%.0f,%.0f)", theta, phi);
183
184 return(buf);
185 }
186 #endif
187
188 /* Create a new migration holder (sharing memory for multiprocessing) */
189 static MIGRATION *
190 new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
191 {
192 size_t memlen = sizeof(MIGRATION) +
193 sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
194 MIGRATION *newmig;
195 #ifdef _WIN32
196 if (nprocs > 1)
197 fprintf(stderr, "%s: warning - multiprocessing not supported\n",
198 progname);
199 nprocs = 1;
200 newmig = (MIGRATION *)malloc(memlen);
201 #else
202 if (nprocs <= 1) { /* single process? */
203 newmig = (MIGRATION *)malloc(memlen);
204 } else { /* else need to share memory */
205 newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
206 MAP_ANON|MAP_SHARED, -1, 0);
207 if ((void *)newmig == MAP_FAILED)
208 newmig = NULL;
209 }
210 #endif
211 if (newmig == NULL) {
212 fprintf(stderr, "%s: cannot allocate new migration\n", progname);
213 exit(1);
214 }
215 newmig->rbfv[0] = from_rbf;
216 newmig->rbfv[1] = to_rbf;
217 /* insert in edge lists */
218 newmig->enxt[0] = from_rbf->ejl;
219 from_rbf->ejl = newmig;
220 newmig->enxt[1] = to_rbf->ejl;
221 to_rbf->ejl = newmig;
222 newmig->next = mig_list; /* push onto global list */
223 return(mig_list = newmig);
224 }
225
226 #ifdef _WIN32
227 #define await_children(n) (void)(n)
228 #define run_subprocess() 0
229 #define end_subprocess() (void)0
230 #else
231
232 /* Wait for the specified number of child processes to complete */
233 static void
234 await_children(int n)
235 {
236 int exit_status = 0;
237
238 if (n > nchild)
239 n = nchild;
240 while (n-- > 0) {
241 int status;
242 if (wait(&status) < 0) {
243 fprintf(stderr, "%s: missing child(ren)!\n", progname);
244 nchild = 0;
245 break;
246 }
247 --nchild;
248 if (status) { /* something wrong */
249 if ((status = WEXITSTATUS(status)))
250 exit_status = status;
251 else
252 exit_status += !exit_status;
253 fprintf(stderr, "%s: subprocess died\n", progname);
254 n = nchild; /* wait for the rest */
255 }
256 }
257 if (exit_status)
258 exit(exit_status);
259 }
260
261 /* Start child process if multiprocessing selected */
262 static pid_t
263 run_subprocess(void)
264 {
265 int status;
266 pid_t pid;
267
268 if (nprocs <= 1) /* any children requested? */
269 return(0);
270 await_children(nchild + 1 - nprocs); /* free up child process */
271 if ((pid = fork())) {
272 if (pid < 0) {
273 fprintf(stderr, "%s: cannot fork subprocess\n",
274 progname);
275 exit(1);
276 }
277 ++nchild; /* subprocess started */
278 return(pid);
279 }
280 nchild = -1;
281 return(0); /* put child to work */
282 }
283
284 /* If we are in subprocess, call exit */
285 #define end_subprocess() if (nchild < 0) _exit(0); else
286
287 #endif /* ! _WIN32 */
288
289 /* Compute and insert migration along directed edge (may fork child) */
290 static MIGRATION *
291 create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
292 {
293 const double end_thresh = 0.1/(from_rbf->nrbf*to_rbf->nrbf);
294 const double check_thresh = 0.01;
295 const double rel_thresh = 5e-6;
296 float *pmtx;
297 MIGRATION *newmig;
298 double *src_rem, *dst_rem;
299 double total_rem = 1., move_amt;
300 int i;
301 /* check if exists already */
302 for (newmig = from_rbf->ejl; newmig != NULL;
303 newmig = nextedge(from_rbf,newmig))
304 if (newmig->rbfv[1] == to_rbf)
305 return(NULL);
306 /* else allocate */
307 newmig = new_migration(from_rbf, to_rbf);
308 if (run_subprocess())
309 return(newmig); /* child continues */
310 pmtx = price_routes(from_rbf, to_rbf);
311 src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf);
312 dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf);
313 if ((src_rem == NULL) | (dst_rem == NULL)) {
314 fprintf(stderr, "%s: Out of memory in create_migration()\n",
315 progname);
316 exit(1);
317 }
318 #ifdef DEBUG
319 fprintf(stderr, "Building path from (theta,phi) %s ",
320 thetaphi(from_rbf->invec));
321 fprintf(stderr, "to %s", thetaphi(to_rbf->invec));
322 /* if (nchild) */ fputc('\n', stderr);
323 #endif
324 /* starting quantities */
325 memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf);
326 for (i = from_rbf->nrbf; i--; )
327 src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal;
328 for (i = to_rbf->nrbf; i--; )
329 dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal;
330 do { /* move a bit at a time */
331 move_amt = migration_step(newmig, src_rem, dst_rem, pmtx);
332 total_rem -= move_amt;
333 #ifdef DEBUG
334 if (!nchild)
335 /* fputc('.', stderr); */
336 fprintf(stderr, "%.9f remaining...\r", total_rem);
337 #endif
338 } while (total_rem > end_thresh && (total_rem > check_thresh) |
339 (move_amt > rel_thresh*total_rem));
340 #ifdef DEBUG
341 if (!nchild) fputs("\ndone.\n", stderr);
342 else fprintf(stderr, "finished with %.9f remaining\n", total_rem);
343 #endif
344 for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
345 float nf = rbf_volume(&from_rbf->rbfa[i]);
346 int j;
347 if (nf <= FTINY) continue;
348 nf = from_rbf->vtotal / nf;
349 for (j = to_rbf->nrbf; j--; )
350 newmig->mtx[mtx_ndx(newmig,i,j)] *= nf;
351 }
352 end_subprocess(); /* exit here if subprocess */
353 free(pmtx); /* free working arrays */
354 free(src_rem);
355 free(dst_rem);
356 return(newmig);
357 }
358
359 /* Check if prospective vertex would create overlapping triangle */
360 static int
361 overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
362 {
363 const MIGRATION *ej;
364 RBFNODE *vother[2];
365 int im_rev;
366 /* find shared edge in mesh */
367 for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
368 const RBFNODE *tv = opp_rbf(pv,ej);
369 if (tv == bv0) {
370 im_rev = is_rev_tri(ej->rbfv[0]->invec,
371 ej->rbfv[1]->invec, bv1->invec);
372 break;
373 }
374 if (tv == bv1) {
375 im_rev = is_rev_tri(ej->rbfv[0]->invec,
376 ej->rbfv[1]->invec, bv0->invec);
377 break;
378 }
379 }
380 if (!get_triangles(vother, ej)) /* triangle on same side? */
381 return(0);
382 return(vother[im_rev] != NULL);
383 }
384
385 /* Find context hull vertex to complete triangle (oriented call) */
386 static RBFNODE *
387 find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
388 {
389 FVECT vmid, vejn, vp;
390 RBFNODE *rbf, *rbfbest = NULL;
391 double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
392
393 VSUB(vejn, rbf1->invec, rbf0->invec);
394 VADD(vmid, rbf0->invec, rbf1->invec);
395 if (normalize(vejn) == 0 || normalize(vmid) == 0)
396 return(NULL);
397 /* XXX exhaustive search */
398 /* Find triangle with minimum rotation from perpendicular */
399 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
400 if ((rbf == rbf0) | (rbf == rbf1))
401 continue;
402 tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
403 if (DOT(vp, vmid) <= FTINY)
404 continue; /* wrong orientation */
405 area2 = .25*DOT(vp,vp);
406 VSUB(vp, rbf->invec, rbf0->invec);
407 dprod = -DOT(vp, vejn);
408 VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
409 dprod = DOT(vp, vmid) / VLEN(vp);
410 if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
411 continue; /* found better already */
412 if (overlaps_tri(rbf0, rbf1, rbf))
413 continue; /* overlaps another triangle */
414 rbfbest = rbf;
415 bestdprod = dprod; /* new one to beat */
416 bestarea2 = area2;
417 }
418 return(rbfbest);
419 }
420
421 /* Create new migration edge and grow mesh recursively around it */
422 static void
423 mesh_from_edge(MIGRATION *edge)
424 {
425 MIGRATION *ej0, *ej1;
426 RBFNODE *tvert[2];
427
428 if (edge == NULL)
429 return;
430 /* triangle on either side? */
431 get_triangles(tvert, edge);
432 if (tvert[0] == NULL) { /* grow mesh on right */
433 tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
434 if (tvert[0] != NULL) {
435 if (tvert[0]->ord > edge->rbfv[0]->ord)
436 ej0 = create_migration(edge->rbfv[0], tvert[0]);
437 else
438 ej0 = create_migration(tvert[0], edge->rbfv[0]);
439 if (tvert[0]->ord > edge->rbfv[1]->ord)
440 ej1 = create_migration(edge->rbfv[1], tvert[0]);
441 else
442 ej1 = create_migration(tvert[0], edge->rbfv[1]);
443 mesh_from_edge(ej0);
444 mesh_from_edge(ej1);
445 }
446 } else if (tvert[1] == NULL) { /* grow mesh on left */
447 tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
448 if (tvert[1] != NULL) {
449 if (tvert[1]->ord > edge->rbfv[0]->ord)
450 ej0 = create_migration(edge->rbfv[0], tvert[1]);
451 else
452 ej0 = create_migration(tvert[1], edge->rbfv[0]);
453 if (tvert[1]->ord > edge->rbfv[1]->ord)
454 ej1 = create_migration(edge->rbfv[1], tvert[1]);
455 else
456 ej1 = create_migration(tvert[1], edge->rbfv[1]);
457 mesh_from_edge(ej0);
458 mesh_from_edge(ej1);
459 }
460 }
461 }
462
463 /* Build our triangle mesh from recorded RBFs */
464 void
465 build_mesh(void)
466 {
467 double best2 = M_PI*M_PI;
468 RBFNODE *shrt_edj[2];
469 RBFNODE *rbf0, *rbf1;
470 /* check if isotropic */
471 if (single_plane_incident) {
472 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
473 if (rbf0->next != NULL)
474 create_migration(rbf0, rbf0->next);
475 await_children(nchild);
476 return;
477 }
478 shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */
479 for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
480 for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
481 double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
482 if (dist2 < best2) {
483 shrt_edj[0] = rbf0;
484 shrt_edj[1] = rbf1;
485 best2 = dist2;
486 }
487 }
488 if (shrt_edj[0] == NULL) {
489 fprintf(stderr, "%s: Cannot find shortest edge\n", progname);
490 exit(1);
491 }
492 /* build mesh from this edge */
493 if (shrt_edj[0]->ord < shrt_edj[1]->ord)
494 mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
495 else
496 mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
497 /* complete migrations */
498 await_children(nchild);
499 }