7 |
|
* G. Ward |
8 |
|
*/ |
9 |
|
|
10 |
< |
#ifndef _WIN32 |
10 |
> |
#if !defined(_WIN32) && !defined(_WIN64) |
11 |
|
#include <unistd.h> |
12 |
|
#include <sys/wait.h> |
13 |
|
#include <sys/mman.h> |
51 |
|
if (i) spinvector(tvec, tvec, outvec, phinc); |
52 |
|
if (tvec[2] > 0 ^ output_orient > 0) |
53 |
|
continue; |
54 |
< |
sum += eval_rbfrep(rbf, tvec) * output_orient*tvec[2]; |
54 |
> |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); |
55 |
|
++n; |
56 |
|
} |
57 |
|
if (n < 2) /* should never happen! */ |
63 |
|
static double |
64 |
|
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
65 |
|
{ |
66 |
< |
const double rad_epsilon = 0.03; |
67 |
< |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) |
68 |
< |
* output_orient*outvec[2]; |
66 |
> |
const double rad_epsilon = 0.01; |
67 |
> |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
68 |
> |
COSF(outvec[2]); |
69 |
|
double inside_rad = rad_epsilon; |
70 |
|
double outside_rad = 0.5; |
71 |
|
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
72 |
|
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
73 |
|
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
74 |
|
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
75 |
< |
/* interpolation search */ |
76 |
< |
while (outside_rad-inside_rad > rad_epsilon) { |
75 |
> |
/* Newton's method (sort of) */ |
76 |
> |
do { |
77 |
|
double test_rad = interp_rad; |
78 |
< |
double DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
79 |
< |
if (DSFtarget < DSFtest) { |
78 |
> |
double DSFtest; |
79 |
> |
if ((test_rad >= outside_rad) | (test_rad <= inside_rad)) |
80 |
> |
test_rad = .5*(inside_rad + outside_rad); |
81 |
> |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
82 |
> |
if (DSFtest > DSFtarget) { |
83 |
|
inside_rad = test_rad; |
84 |
|
DSFinside = DSFtest; |
85 |
|
} else { |
86 |
|
outside_rad = test_rad; |
87 |
|
DSFoutside = DSFtest; |
88 |
|
} |
89 |
< |
} |
90 |
< |
return(interp_rad); |
89 |
> |
} while (outside_rad-inside_rad > rad_epsilon); |
90 |
> |
|
91 |
> |
return(.5*(inside_rad + outside_rad)); |
92 |
|
#undef interp_rad |
93 |
|
} |
94 |
|
|
95 |
< |
/* Compute average BSDF peak from current DSF's */ |
95 |
> |
static int |
96 |
> |
dbl_cmp(const void *p1, const void *p2) |
97 |
> |
{ |
98 |
> |
double d1 = *(const double *)p1; |
99 |
> |
double d2 = *(const double *)p2; |
100 |
> |
|
101 |
> |
if (d1 > d2) return(1); |
102 |
> |
if (d1 < d2) return(-1); |
103 |
> |
return(0); |
104 |
> |
} |
105 |
> |
|
106 |
> |
/* Conservative estimate of average BSDF value from current DSF's */ |
107 |
|
static void |
108 |
|
comp_bsdf_spec(void) |
109 |
|
{ |
110 |
< |
double peak_sum = 0; |
110 |
> |
double vmod_sum = 0; |
111 |
|
double rad_sum = 0; |
112 |
|
int n = 0; |
113 |
+ |
double *cost_list = NULL; |
114 |
+ |
double max_cost = 1.; |
115 |
|
RBFNODE *rbf; |
116 |
|
FVECT sdv; |
117 |
< |
|
118 |
< |
if (dsf_list == NULL) { |
119 |
< |
bsdf_spec_peak = 0; |
117 |
> |
/* sort by incident altitude */ |
118 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
119 |
> |
n++; |
120 |
> |
if (n >= 10) |
121 |
> |
cost_list = (double *)malloc(sizeof(double)*n); |
122 |
> |
if (cost_list == NULL) { |
123 |
> |
bsdf_spec_val = 0; |
124 |
|
bsdf_spec_rad = 0; |
125 |
|
return; |
126 |
|
} |
127 |
+ |
n = 0; |
128 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
129 |
+ |
cost_list[n++] = rbf->invec[2]*input_orient; |
130 |
+ |
qsort(cost_list, n, sizeof(double), dbl_cmp); |
131 |
+ |
max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */ |
132 |
+ |
free(cost_list); |
133 |
+ |
n = 0; |
134 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
135 |
+ |
double this_rad, cosfact, vest; |
136 |
+ |
if (rbf->invec[2]*input_orient > max_cost) |
137 |
+ |
continue; |
138 |
|
sdv[0] = -rbf->invec[0]; |
139 |
|
sdv[1] = -rbf->invec[1]; |
140 |
|
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
141 |
< |
peak_sum += eval_rbfrep(rbf, sdv); |
142 |
< |
rad_sum += est_DSFrad(rbf, sdv); |
141 |
> |
cosfact = COSF(sdv[2]); |
142 |
> |
this_rad = est_DSFrad(rbf, sdv); |
143 |
> |
vest = eval_rbfrep(rbf, sdv) * cosfact * |
144 |
> |
(2.*M_PI) * this_rad*this_rad; |
145 |
> |
if (vest > rbf->vtotal) /* don't over-estimate energy */ |
146 |
> |
vest = rbf->vtotal; |
147 |
> |
vmod_sum += vest / cosfact; /* remove cosine factor */ |
148 |
> |
rad_sum += this_rad; |
149 |
|
++n; |
150 |
|
} |
114 |
– |
bsdf_spec_peak = peak_sum/(double)n; |
151 |
|
bsdf_spec_rad = rad_sum/(double)n; |
152 |
+ |
bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad); |
153 |
|
} |
154 |
|
|
155 |
|
/* Create a new migration holder (sharing memory for multiprocessing) */ |
159 |
|
size_t memlen = sizeof(MIGRATION) + |
160 |
|
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); |
161 |
|
MIGRATION *newmig; |
162 |
< |
#ifdef _WIN32 |
162 |
> |
#if defined(_WIN32) || defined(_WIN64) |
163 |
|
if (nprocs > 1) |
164 |
|
fprintf(stderr, "%s: warning - multiprocessing not supported\n", |
165 |
|
progname); |
190 |
|
return(mig_list = newmig); |
191 |
|
} |
192 |
|
|
193 |
< |
#ifdef _WIN32 |
193 |
> |
#if defined(_WIN32) || defined(_WIN64) |
194 |
|
#define await_children(n) (void)(n) |
195 |
|
#define run_subprocess() 0 |
196 |
|
#define end_subprocess() (void)0 |
488 |
|
default: |
489 |
|
return; /* else we can interpolate */ |
490 |
|
} |
491 |
< |
for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { |
491 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
492 |
|
const double d = input_orient*rbf->invec[2]; |
493 |
|
if (d >= 1.-2.*FTINY) |
494 |
|
return; /* seems we have normal */ |