| 27 |
|
/* number of children (-1 in child) */ |
| 28 |
|
static int nchild = 0; |
| 29 |
|
|
| 30 |
< |
typedef struct { |
| 31 |
< |
int nrows, ncols; /* array size (matches migration) */ |
| 32 |
< |
float *price; /* migration prices */ |
| 33 |
< |
short *sord; /* sort for each row, low to high */ |
| 34 |
< |
float *prow; /* current price row */ |
| 35 |
< |
} PRICEMAT; /* sorted pricing matrix */ |
| 30 |
> |
/* Compute average DSF value at the given radius from central vector */ |
| 31 |
> |
static double |
| 32 |
> |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) |
| 33 |
> |
{ |
| 34 |
> |
const int ninc = 12; |
| 35 |
> |
const double phinc = 2.*M_PI/ninc; |
| 36 |
> |
double sum = 0; |
| 37 |
> |
int n = 0; |
| 38 |
> |
FVECT tvec; |
| 39 |
> |
int i; |
| 40 |
> |
/* compute initial vector */ |
| 41 |
> |
if (output_orient*outvec[2] >= 1.-FTINY) { |
| 42 |
> |
tvec[0] = tvec[2] = 0; |
| 43 |
> |
tvec[1] = 1; |
| 44 |
> |
} else { |
| 45 |
> |
tvec[0] = tvec[1] = 0; |
| 46 |
> |
tvec[2] = 1; |
| 47 |
> |
} |
| 48 |
> |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD); |
| 49 |
> |
/* average surrounding DSF */ |
| 50 |
> |
for (i = 0; i < ninc; i++) { |
| 51 |
> |
if (i) spinvector(tvec, tvec, outvec, phinc); |
| 52 |
> |
if (tvec[2] > 0 ^ output_orient > 0) |
| 53 |
> |
continue; |
| 54 |
> |
sum += eval_rbfrep(rbf, tvec) * output_orient*tvec[2]; |
| 55 |
> |
++n; |
| 56 |
> |
} |
| 57 |
> |
if (n < 2) /* should never happen! */ |
| 58 |
> |
return(sum); |
| 59 |
> |
return(sum/(double)n); |
| 60 |
> |
} |
| 61 |
|
|
| 62 |
< |
#define pricerow(p,i) ((p)->price + (i)*(p)->ncols) |
| 63 |
< |
#define psortrow(p,i) ((p)->sord + (i)*(p)->ncols) |
| 62 |
> |
/* Estimate single-lobe radius for DSF at the given outgoing angle */ |
| 63 |
> |
static double |
| 64 |
> |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
| 65 |
> |
{ |
| 66 |
> |
const double rad_epsilon = 0.03; |
| 67 |
> |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) |
| 68 |
> |
* output_orient*outvec[2]; |
| 69 |
> |
double inside_rad = rad_epsilon; |
| 70 |
> |
double outside_rad = 0.5; |
| 71 |
> |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
| 72 |
> |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
| 73 |
> |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
| 74 |
> |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
| 75 |
> |
/* interpolation search */ |
| 76 |
> |
while (outside_rad-inside_rad > rad_epsilon) { |
| 77 |
> |
double test_rad = interp_rad; |
| 78 |
> |
double DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
| 79 |
> |
if (DSFtarget < DSFtest) { |
| 80 |
> |
inside_rad = test_rad; |
| 81 |
> |
DSFinside = DSFtest; |
| 82 |
> |
} else { |
| 83 |
> |
outside_rad = test_rad; |
| 84 |
> |
DSFoutside = DSFtest; |
| 85 |
> |
} |
| 86 |
> |
} |
| 87 |
> |
return(interp_rad); |
| 88 |
> |
#undef interp_rad |
| 89 |
> |
} |
| 90 |
|
|
| 91 |
+ |
/* Compute average BSDF peak from current DSF's */ |
| 92 |
+ |
static void |
| 93 |
+ |
comp_bsdf_spec(void) |
| 94 |
+ |
{ |
| 95 |
+ |
double peak_sum = 0; |
| 96 |
+ |
double rad_sum = 0; |
| 97 |
+ |
int n = 0; |
| 98 |
+ |
RBFNODE *rbf; |
| 99 |
+ |
FVECT sdv; |
| 100 |
+ |
|
| 101 |
+ |
if (dsf_list == NULL) { |
| 102 |
+ |
bsdf_spec_peak = 0; |
| 103 |
+ |
bsdf_spec_crad = 0; |
| 104 |
+ |
return; |
| 105 |
+ |
} |
| 106 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 107 |
+ |
sdv[0] = -rbf->invec[0]; |
| 108 |
+ |
sdv[1] = -rbf->invec[1]; |
| 109 |
+ |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
| 110 |
+ |
peak_sum += eval_rbfrep(rbf, sdv); |
| 111 |
+ |
rad_sum += est_DSFrad(rbf, sdv); |
| 112 |
+ |
++n; |
| 113 |
+ |
} |
| 114 |
+ |
bsdf_spec_peak = peak_sum/(double)n; |
| 115 |
+ |
bsdf_spec_crad = ANG2R( rad_sum/(double)n ); |
| 116 |
+ |
} |
| 117 |
+ |
|
| 118 |
|
/* Create a new migration holder (sharing memory for multiprocessing) */ |
| 119 |
|
static MIGRATION * |
| 120 |
|
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
| 243 |
|
double d; |
| 244 |
|
int p[4]; |
| 245 |
|
int i, j; |
| 168 |
– |
|
| 169 |
– |
if ((x0 == x1) & (y0 == y1)) |
| 170 |
– |
return(0.); |
| 246 |
|
/* check radius */ |
| 247 |
|
p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; |
| 248 |
|
for (i = 4; i--; ) { |
| 258 |
|
return(sum2 / (4*rad*(rad+1) + 1)); |
| 259 |
|
} |
| 260 |
|
|
| 261 |
< |
/* Comparison routine needed for sorting price row */ |
| 262 |
< |
static int |
| 263 |
< |
msrt_cmp(void *b, const void *p1, const void *p2) |
| 261 |
> |
/* Compute distance between two RBF lobes */ |
| 262 |
> |
double |
| 263 |
> |
lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) |
| 264 |
|
{ |
| 265 |
< |
PRICEMAT *pm = (PRICEMAT *)b; |
| 266 |
< |
float c1 = pm->prow[*(const short *)p1]; |
| 267 |
< |
float c2 = pm->prow[*(const short *)p2]; |
| 268 |
< |
|
| 269 |
< |
if (c1 > c2) return(1); |
| 270 |
< |
if (c1 < c2) return(-1); |
| 271 |
< |
return(0); |
| 265 |
> |
FVECT vfrom, vto; |
| 266 |
> |
double d, res; |
| 267 |
> |
/* quadratic cost function */ |
| 268 |
> |
ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); |
| 269 |
> |
ovec_from_pos(vto, rbf2->gx, rbf2->gy); |
| 270 |
> |
d = Acos(DOT(vfrom, vto)); |
| 271 |
> |
res = d*d; |
| 272 |
> |
d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); |
| 273 |
> |
res += d*d; |
| 274 |
> |
/* neighborhood difference */ |
| 275 |
> |
res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, |
| 276 |
> |
rbf2->gx, rbf2->gy ); |
| 277 |
> |
return(res); |
| 278 |
|
} |
| 279 |
|
|
| 199 |
– |
/* Compute (and allocate) migration price matrix for optimization */ |
| 200 |
– |
static void |
| 201 |
– |
price_routes(PRICEMAT *pm, const RBFNODE *from_rbf, const RBFNODE *to_rbf) |
| 202 |
– |
{ |
| 203 |
– |
FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); |
| 204 |
– |
int i, j; |
| 280 |
|
|
| 206 |
– |
compute_nDSFs(from_rbf, to_rbf); |
| 207 |
– |
pm->nrows = from_rbf->nrbf; |
| 208 |
– |
pm->ncols = to_rbf->nrbf; |
| 209 |
– |
pm->price = (float *)malloc(sizeof(float) * pm->nrows*pm->ncols); |
| 210 |
– |
pm->sord = (short *)malloc(sizeof(short) * pm->nrows*pm->ncols); |
| 211 |
– |
|
| 212 |
– |
if ((pm->price == NULL) | (pm->sord == NULL) | (vto == NULL)) { |
| 213 |
– |
fprintf(stderr, "%s: Out of memory in migration_costs()\n", |
| 214 |
– |
progname); |
| 215 |
– |
exit(1); |
| 216 |
– |
} |
| 217 |
– |
for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */ |
| 218 |
– |
ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); |
| 219 |
– |
|
| 220 |
– |
for (i = from_rbf->nrbf; i--; ) { |
| 221 |
– |
const double from_ang = R2ANG(from_rbf->rbfa[i].crad); |
| 222 |
– |
FVECT vfrom; |
| 223 |
– |
short *srow; |
| 224 |
– |
ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); |
| 225 |
– |
pm->prow = pricerow(pm,i); |
| 226 |
– |
srow = psortrow(pm,i); |
| 227 |
– |
for (j = to_rbf->nrbf; j--; ) { |
| 228 |
– |
double d; /* quadratic cost function */ |
| 229 |
– |
d = Acos(DOT(vfrom, vto[j])); |
| 230 |
– |
pm->prow[j] = d*d; |
| 231 |
– |
d = R2ANG(to_rbf->rbfa[j].crad) - from_ang; |
| 232 |
– |
pm->prow[j] += d*d; |
| 233 |
– |
/* neighborhood difference */ |
| 234 |
– |
pm->prow[j] += NEIGH_FACT2 * neighborhood_dist2( |
| 235 |
– |
from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy, |
| 236 |
– |
to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy ); |
| 237 |
– |
srow[j] = j; |
| 238 |
– |
} |
| 239 |
– |
qsort_r(srow, pm->ncols, sizeof(short), pm, &msrt_cmp); |
| 240 |
– |
} |
| 241 |
– |
free(vto); |
| 242 |
– |
} |
| 243 |
– |
|
| 244 |
– |
/* Free price matrix */ |
| 245 |
– |
static void |
| 246 |
– |
free_routes(PRICEMAT *pm) |
| 247 |
– |
{ |
| 248 |
– |
free(pm->price); pm->price = NULL; |
| 249 |
– |
free(pm->sord); pm->sord = NULL; |
| 250 |
– |
} |
| 251 |
– |
|
| 252 |
– |
/* Compute minimum (optimistic) cost for moving the given source material */ |
| 253 |
– |
static double |
| 254 |
– |
min_cost(double amt2move, const double *avail, const PRICEMAT *pm, int s) |
| 255 |
– |
{ |
| 256 |
– |
const short *srow = psortrow(pm,s); |
| 257 |
– |
const float *prow = pricerow(pm,s); |
| 258 |
– |
double total_cost = 0; |
| 259 |
– |
int j; |
| 260 |
– |
/* move cheapest first */ |
| 261 |
– |
for (j = 0; (j < pm->ncols) & (amt2move > FTINY); j++) { |
| 262 |
– |
int d = srow[j]; |
| 263 |
– |
double amt = (amt2move < avail[d]) ? amt2move : avail[d]; |
| 264 |
– |
|
| 265 |
– |
total_cost += amt * prow[d]; |
| 266 |
– |
amt2move -= amt; |
| 267 |
– |
} |
| 268 |
– |
return(total_cost); |
| 269 |
– |
} |
| 270 |
– |
|
| 271 |
– |
typedef struct { |
| 272 |
– |
short s, d; /* source and destination */ |
| 273 |
– |
float dc; /* discount to push inventory */ |
| 274 |
– |
} ROWSENT; /* row sort entry */ |
| 275 |
– |
|
| 276 |
– |
/* Compare entries by discounted moving price */ |
| 277 |
– |
static int |
| 278 |
– |
rmovcmp(void *b, const void *p1, const void *p2) |
| 279 |
– |
{ |
| 280 |
– |
PRICEMAT *pm = (PRICEMAT *)b; |
| 281 |
– |
const ROWSENT *re1 = (const ROWSENT *)p1; |
| 282 |
– |
const ROWSENT *re2 = (const ROWSENT *)p2; |
| 283 |
– |
double price_diff; |
| 284 |
– |
|
| 285 |
– |
if (re1->d < 0) return(re2->d >= 0); |
| 286 |
– |
if (re2->d < 0) return(-1); |
| 287 |
– |
price_diff = re1->dc*pricerow(pm,re1->s)[re1->d] - |
| 288 |
– |
re2->dc*pricerow(pm,re2->s)[re2->d]; |
| 289 |
– |
if (price_diff > 0) return(1); |
| 290 |
– |
if (price_diff < 0) return(-1); |
| 291 |
– |
return(0); |
| 292 |
– |
} |
| 293 |
– |
|
| 294 |
– |
/* Take a step in migration by choosing reasonable bucket to transfer */ |
| 295 |
– |
static double |
| 296 |
– |
migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, PRICEMAT *pm) |
| 297 |
– |
{ |
| 298 |
– |
const int max2check = 100; |
| 299 |
– |
const double maxamt = 1./(double)pm->ncols; |
| 300 |
– |
const double minamt = maxamt*1e-4; |
| 301 |
– |
double *src_cost; |
| 302 |
– |
ROWSENT *rord; |
| 303 |
– |
struct { |
| 304 |
– |
int s, d; /* source and destination */ |
| 305 |
– |
double price; /* cost per amount moved */ |
| 306 |
– |
double amt; /* amount we can move */ |
| 307 |
– |
} cur, best; |
| 308 |
– |
int r2check, i, ri; |
| 309 |
– |
/* |
| 310 |
– |
* Check cheapest available routes only -- a higher adjusted |
| 311 |
– |
* destination price implies that another source is closer, so |
| 312 |
– |
* we can hold off considering more expensive options until |
| 313 |
– |
* some other (hopefully better) moves have been made. |
| 314 |
– |
* A discount based on source remaining is supposed to prioritize |
| 315 |
– |
* movement from large lobes, but it doesn't seem to do much, |
| 316 |
– |
* so we have it set to 1.0 at the moment. |
| 317 |
– |
*/ |
| 318 |
– |
#define discount(qr) 1.0 |
| 319 |
– |
/* most promising row order */ |
| 320 |
– |
rord = (ROWSENT *)malloc(sizeof(ROWSENT)*pm->nrows); |
| 321 |
– |
if (rord == NULL) |
| 322 |
– |
goto memerr; |
| 323 |
– |
for (ri = pm->nrows; ri--; ) { |
| 324 |
– |
rord[ri].s = ri; |
| 325 |
– |
rord[ri].d = -1; |
| 326 |
– |
rord[ri].dc = 1.f; |
| 327 |
– |
if (src_rem[ri] <= minamt) /* enough source material? */ |
| 328 |
– |
continue; |
| 329 |
– |
for (i = 0; i < pm->ncols; i++) |
| 330 |
– |
if (dst_rem[ rord[ri].d = psortrow(pm,ri)[i] ] > minamt) |
| 331 |
– |
break; |
| 332 |
– |
if (i >= pm->ncols) { /* moved all we can? */ |
| 333 |
– |
free(rord); |
| 334 |
– |
return(.0); |
| 335 |
– |
} |
| 336 |
– |
rord[ri].dc = discount(src_rem[ri]); |
| 337 |
– |
} |
| 338 |
– |
if (pm->nrows > max2check) /* sort if too many sources */ |
| 339 |
– |
qsort_r(rord, pm->nrows, sizeof(ROWSENT), pm, &rmovcmp); |
| 340 |
– |
/* allocate cost array */ |
| 341 |
– |
src_cost = (double *)malloc(sizeof(double)*pm->nrows); |
| 342 |
– |
if (src_cost == NULL) |
| 343 |
– |
goto memerr; |
| 344 |
– |
for (i = pm->nrows; i--; ) /* starting costs for diff. */ |
| 345 |
– |
src_cost[i] = min_cost(src_rem[i], dst_rem, pm, i); |
| 346 |
– |
/* find best source & dest. */ |
| 347 |
– |
best.s = best.d = -1; best.price = FHUGE; best.amt = 0; |
| 348 |
– |
if ((r2check = pm->nrows) > max2check) |
| 349 |
– |
r2check = max2check; /* put a limit on search */ |
| 350 |
– |
for (ri = 0; ri < r2check; ri++) { /* check each source row */ |
| 351 |
– |
double cost_others = 0; |
| 352 |
– |
cur.s = rord[ri].s; |
| 353 |
– |
if ((cur.d = rord[ri].d) < 0 || |
| 354 |
– |
rord[ri].dc*pricerow(pm,cur.s)[cur.d] >= best.price) { |
| 355 |
– |
if (pm->nrows > max2check) break; /* sorted end */ |
| 356 |
– |
continue; /* else skip this one */ |
| 357 |
– |
} |
| 358 |
– |
cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? |
| 359 |
– |
src_rem[cur.s] : dst_rem[cur.d]; |
| 360 |
– |
/* don't just leave smidgen */ |
| 361 |
– |
if (cur.amt > maxamt*1.02) cur.amt = maxamt; |
| 362 |
– |
dst_rem[cur.d] -= cur.amt; /* add up opportunity costs */ |
| 363 |
– |
for (i = pm->nrows; i--; ) |
| 364 |
– |
if (i != cur.s) |
| 365 |
– |
cost_others += min_cost(src_rem[i], dst_rem, pm, i) |
| 366 |
– |
- src_cost[i]; |
| 367 |
– |
dst_rem[cur.d] += cur.amt; /* undo trial move */ |
| 368 |
– |
/* discount effective price */ |
| 369 |
– |
cur.price = ( pricerow(pm,cur.s)[cur.d] + cost_others/cur.amt ) * |
| 370 |
– |
rord[ri].dc; |
| 371 |
– |
if (cur.price < best.price) /* are we better than best? */ |
| 372 |
– |
best = cur; |
| 373 |
– |
} |
| 374 |
– |
free(src_cost); /* clean up */ |
| 375 |
– |
free(rord); |
| 376 |
– |
if ((best.s < 0) | (best.d < 0)) /* nothing left to move? */ |
| 377 |
– |
return(.0); |
| 378 |
– |
/* else make the actual move */ |
| 379 |
– |
mtx_coef(mig,best.s,best.d) += best.amt; |
| 380 |
– |
src_rem[best.s] -= best.amt; |
| 381 |
– |
dst_rem[best.d] -= best.amt; |
| 382 |
– |
return(best.amt); |
| 383 |
– |
memerr: |
| 384 |
– |
fprintf(stderr, "%s: Out of memory in migration_step()\n", progname); |
| 385 |
– |
exit(1); |
| 386 |
– |
#undef discount |
| 387 |
– |
} |
| 388 |
– |
|
| 281 |
|
/* Compute and insert migration along directed edge (may fork child) */ |
| 282 |
|
static MIGRATION * |
| 283 |
|
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
| 284 |
|
{ |
| 393 |
– |
const double end_thresh = 5e-6; |
| 394 |
– |
PRICEMAT pmtx; |
| 285 |
|
MIGRATION *newmig; |
| 396 |
– |
double *src_rem, *dst_rem; |
| 397 |
– |
double total_rem = 1., move_amt; |
| 286 |
|
int i, j; |
| 287 |
|
/* check if exists already */ |
| 288 |
|
for (newmig = from_rbf->ejl; newmig != NULL; |
| 302 |
|
newmig = new_migration(from_rbf, to_rbf); |
| 303 |
|
if (run_subprocess()) |
| 304 |
|
return(newmig); /* child continues */ |
| 417 |
– |
price_routes(&pmtx, from_rbf, to_rbf); |
| 418 |
– |
src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); |
| 419 |
– |
dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); |
| 420 |
– |
if ((src_rem == NULL) | (dst_rem == NULL)) { |
| 421 |
– |
fprintf(stderr, "%s: Out of memory in create_migration()\n", |
| 422 |
– |
progname); |
| 423 |
– |
exit(1); |
| 424 |
– |
} |
| 425 |
– |
/* starting quantities */ |
| 426 |
– |
memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); |
| 427 |
– |
for (i = from_rbf->nrbf; i--; ) |
| 428 |
– |
src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; |
| 429 |
– |
for (j = to_rbf->nrbf; j--; ) |
| 430 |
– |
dst_rem[j] = rbf_volume(&to_rbf->rbfa[j]) / to_rbf->vtotal; |
| 305 |
|
|
| 306 |
< |
do { /* move a bit at a time */ |
| 307 |
< |
move_amt = migration_step(newmig, src_rem, dst_rem, &pmtx); |
| 308 |
< |
total_rem -= move_amt; |
| 435 |
< |
} while ((total_rem > end_thresh) & (move_amt > 0)); |
| 306 |
> |
/* compute transport plan */ |
| 307 |
> |
compute_nDSFs(from_rbf, to_rbf); |
| 308 |
> |
plan_transport(newmig); |
| 309 |
|
|
| 310 |
|
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ |
| 311 |
|
double nf = rbf_volume(&from_rbf->rbfa[i]); |
| 315 |
|
mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ |
| 316 |
|
} |
| 317 |
|
end_subprocess(); /* exit here if subprocess */ |
| 445 |
– |
free_routes(&pmtx); /* free working arrays */ |
| 446 |
– |
free(src_rem); |
| 447 |
– |
free(dst_rem); |
| 318 |
|
return(newmig); |
| 319 |
|
} |
| 320 |
|
|
| 404 |
|
ej1 = create_migration(tvert[0], edge->rbfv[1]); |
| 405 |
|
mesh_from_edge(ej0); |
| 406 |
|
mesh_from_edge(ej1); |
| 407 |
+ |
return; |
| 408 |
|
} |
| 409 |
< |
} else if (tvert[1] == NULL) { /* grow mesh on left */ |
| 409 |
> |
} |
| 410 |
> |
if (tvert[1] == NULL) { /* grow mesh on left */ |
| 411 |
|
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); |
| 412 |
|
if (tvert[1] != NULL) { |
| 413 |
|
if (tvert[1]->ord > edge->rbfv[0]->ord) |
| 428 |
|
static void |
| 429 |
|
check_normal_incidence(void) |
| 430 |
|
{ |
| 431 |
< |
static const FVECT norm_vec = {.0, .0, 1.}; |
| 431 |
> |
static FVECT norm_vec = {.0, .0, 1.}; |
| 432 |
|
const int saved_nprocs = nprocs; |
| 433 |
|
RBFNODE *near_rbf, *mir_rbf, *rbf; |
| 434 |
|
double bestd; |
| 478 |
|
memcpy(mir_rbf, near_rbf, n); |
| 479 |
|
mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ |
| 480 |
|
mir_rbf->next = NULL; |
| 481 |
+ |
mir_rbf->ejl = NULL; |
| 482 |
|
rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); |
| 483 |
|
nprocs = 1; /* compute migration matrix */ |
| 484 |
< |
if (mig_list != create_migration(mir_rbf, near_rbf)) |
| 484 |
> |
if (create_migration(mir_rbf, near_rbf) == NULL) |
| 485 |
|
exit(1); /* XXX should never happen! */ |
| 486 |
< |
/* interpolate normal dist. */ |
| 487 |
< |
rbf = e_advect_rbf(mig_list, norm_vec, 2*near_rbf->nrbf); |
| 486 |
> |
norm_vec[2] = input_orient; /* interpolate normal dist. */ |
| 487 |
> |
rbf = e_advect_rbf(mig_list, norm_vec, 0); |
| 488 |
|
nprocs = saved_nprocs; /* final clean-up */ |
| 489 |
|
free(mir_rbf); |
| 490 |
|
free(mig_list); |
| 504 |
|
double best2 = M_PI*M_PI; |
| 505 |
|
RBFNODE *shrt_edj[2]; |
| 506 |
|
RBFNODE *rbf0, *rbf1; |
| 507 |
+ |
/* average specular peak */ |
| 508 |
+ |
comp_bsdf_spec(); |
| 509 |
|
/* add normal if needed */ |
| 510 |
|
check_normal_incidence(); |
| 511 |
|
/* check if isotropic */ |