--- ray/src/cv/bsdfmesh.c 2013/09/26 14:57:18 2.10 +++ ray/src/cv/bsdfmesh.c 2014/02/19 05:16:06 2.16 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfmesh.c,v 2.10 2013/09/26 14:57:18 greg Exp $"; +static const char RCSid[] = "$Id: bsdfmesh.c,v 2.16 2014/02/19 05:16:06 greg Exp $"; #endif /* * Create BSDF advection mesh from radial basis functions. @@ -176,9 +176,12 @@ price_routes(PRICEMAT *pm, const RBFNODE *from_rbf, co pm->prow = pricerow(pm,i); srow = psortrow(pm,i); for (j = to_rbf->nrbf; j--; ) { - double dprod = DOT(vfrom, vto[j]); - pm->prow[j] = ((dprod >= 1.) ? .0 : acos(dprod)) + - fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang); + double d; /* quadratic cost function */ + d = DOT(vfrom, vto[j]); + d = (d >= 1.) ? .0 : acos(d); + pm->prow[j] = d*d; + d = R2ANG(to_rbf->rbfa[j].crad) - from_ang; + pm->prow[j] += d*d; srow[j] = j; } qsort_r(srow, pm->ncols, sizeof(short), pm, &msrt_cmp); @@ -198,75 +201,112 @@ free_routes(PRICEMAT *pm) static double min_cost(double amt2move, const double *avail, const PRICEMAT *pm, int s) { + const short *srow = psortrow(pm,s); + const float *prow = pricerow(pm,s); double total_cost = 0; int j; - - if (amt2move <= FTINY) /* pre-emptive check */ - return(.0); /* move cheapest first */ - for (j = 0; j < pm->ncols && amt2move > FTINY; j++) { - int d = psortrow(pm,s)[j]; + for (j = 0; (j < pm->ncols) & (amt2move > FTINY); j++) { + int d = srow[j]; double amt = (amt2move < avail[d]) ? amt2move : avail[d]; - total_cost += amt * pricerow(pm,s)[d]; + total_cost += amt * prow[d]; amt2move -= amt; } return(total_cost); } -/* Take a step in migration by choosing optimal bucket to transfer */ +/* Compare entries by moving price */ +static int +rmovcmp(void *b, const void *p1, const void *p2) +{ + PRICEMAT *pm = (PRICEMAT *)b; + const short *ij1 = (const short *)p1; + const short *ij2 = (const short *)p2; + float price_diff; + + if (ij1[1] < 0) return(ij2[1] >= 0); + if (ij2[1] < 0) return(-1); + price_diff = pricerow(pm,ij1[0])[ij1[1]] - pricerow(pm,ij2[0])[ij2[1]]; + if (price_diff > 0) return(1); + if (price_diff < 0) return(-1); + return(0); +} + +/* Take a step in migration by choosing reasonable bucket to transfer */ static double -migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const PRICEMAT *pm) +migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, PRICEMAT *pm) { + const int max2check = 100; const double maxamt = 1./(double)pm->ncols; - const double minamt = maxamt*5e-6; + const double minamt = maxamt*1e-4; double *src_cost; + short (*rord)[2]; struct { int s, d; /* source and destination */ double price; /* price estimate per amount moved */ double amt; /* amount we can move */ } cur, best; - int i; + int r2check, i, ri; + /* + * Check cheapest available routes only -- a higher adjusted + * destination price implies that another source is closer, so + * we can hold off considering more expensive options until + * some other (hopefully better) moves have been made. + */ + /* most promising row order */ + rord = (short (*)[2])malloc(sizeof(short)*2*pm->nrows); + if (rord == NULL) + goto memerr; + for (ri = pm->nrows; ri--; ) { + rord[ri][0] = ri; + rord[ri][1] = -1; + if (src_rem[ri] <= minamt) /* enough source material? */ + continue; + for (i = 0; i < pm->ncols; i++) + if (dst_rem[ rord[ri][1] = psortrow(pm,ri)[i] ] > minamt) + break; + if (i >= pm->ncols) { /* moved all we can? */ + free(rord); + return(.0); + } + } + if (pm->nrows > max2check) /* sort if too many sources */ + qsort_r(rord, pm->nrows, sizeof(short)*2, pm, &rmovcmp); /* allocate cost array */ src_cost = (double *)malloc(sizeof(double)*pm->nrows); - if (src_cost == NULL) { - fprintf(stderr, "%s: Out of memory in migration_step()\n", - progname); - exit(1); - } + if (src_cost == NULL) + goto memerr; for (i = pm->nrows; i--; ) /* starting costs for diff. */ src_cost[i] = min_cost(src_rem[i], dst_rem, pm, i); - /* find best source & dest. */ best.s = best.d = -1; best.price = FHUGE; best.amt = 0; - for (cur.s = pm->nrows; cur.s--; ) { + if ((r2check = pm->nrows) > max2check) + r2check = max2check; /* put a limit on search */ + for (ri = 0; ri < r2check; ri++) { /* check each source row */ double cost_others = 0; - - if (src_rem[cur.s] <= minamt) - continue; - /* examine cheapest dest. */ - for (i = 0; i < pm->ncols; i++) - if (dst_rem[ cur.d = psortrow(pm,cur.s)[i] ] > minamt) - break; - if (i >= pm->ncols) - break; - if ((cur.price = pricerow(pm,cur.s)[cur.d]) >= best.price) - continue; /* no point checking further */ + cur.s = rord[ri][0]; + if ((cur.d = rord[ri][1]) < 0 || + (cur.price = pricerow(pm,cur.s)[cur.d]) >= best.price) { + if (pm->nrows > max2check) break; /* sorted end */ + continue; /* else skip this one */ + } cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? src_rem[cur.s] : dst_rem[cur.d]; - if (cur.amt > maxamt) cur.amt = maxamt; - dst_rem[cur.d] -= cur.amt; /* add up differential costs */ + /* don't just leave smidgen */ + if (cur.amt > maxamt*1.02) cur.amt = maxamt; + dst_rem[cur.d] -= cur.amt; /* add up opportunity costs */ for (i = pm->nrows; i--; ) if (i != cur.s) - cost_others += min_cost(src_rem[i], dst_rem, pm, i) + cost_others += min_cost(src_rem[i], dst_rem, pm, i) - src_cost[i]; dst_rem[cur.d] += cur.amt; /* undo trial move */ cur.price += cost_others/cur.amt; /* adjust effective price */ if (cur.price < best.price) /* are we better than best? */ - best = cur; + best = cur; } - free(src_cost); /* finish up */ - + free(src_cost); /* clean up */ + free(rord); if ((best.s < 0) | (best.d < 0)) /* nothing left to move? */ return(.0); /* else make the actual move */ @@ -274,6 +314,9 @@ migration_step(MIGRATION *mig, double *src_rem, double src_rem[best.s] -= best.amt; dst_rem[best.d] -= best.amt; return(best.amt); +memerr: + fprintf(stderr, "%s: Out of memory in migration_step()\n", progname); + exit(1); } /* Compute and insert migration along directed edge (may fork child) */ @@ -293,10 +336,10 @@ create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) return(NULL); /* else allocate */ #ifdef DEBUG - fprintf(stderr, "Building path from (theta,phi) (%.0f,%.0f) ", + fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", get_theta180(from_rbf->invec), get_phi360(from_rbf->invec)); - fprintf(stderr, "to (%.0f,%.0f) with %d x %d matrix\n", + fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", get_theta180(to_rbf->invec), get_phi360(to_rbf->invec), from_rbf->nrbf, to_rbf->nrbf); @@ -364,7 +407,7 @@ overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, c return(vother[im_rev] != NULL); } -/* Find context hull vertex to complete triangle (oriented call) */ +/* Find convex hull vertex to complete triangle (oriented call) */ static RBFNODE * find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) { @@ -385,7 +428,7 @@ find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rb if (DOT(vp, vmid) <= FTINY) continue; /* wrong orientation */ area2 = .25*DOT(vp,vp); - VSUB(vp, rbf->invec, rbf0->invec); + VSUB(vp, rbf->invec, vmid); dprod = -DOT(vp, vejn); VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ dprod = DOT(vp, vmid) / VLEN(vp); @@ -441,6 +484,78 @@ mesh_from_edge(MIGRATION *edge) } } } + +/* Add normal direction if missing */ +static void +check_normal_incidence(void) +{ + static const FVECT norm_vec = {.0, .0, 1.}; + const int saved_nprocs = nprocs; + RBFNODE *near_rbf, *mir_rbf, *rbf; + double bestd; + int n; + + if (dsf_list == NULL) + return; /* XXX should be error? */ + near_rbf = dsf_list; + bestd = input_orient*near_rbf->invec[2]; + if (single_plane_incident) { /* ordered plane incidence? */ + if (bestd >= 1.-2.*FTINY) + return; /* already have normal */ + } else { + switch (inp_coverage) { + case INP_QUAD1: + case INP_QUAD2: + case INP_QUAD3: + case INP_QUAD4: + break; /* quadrilateral symmetry? */ + default: + return; /* else we can interpolate */ + } + for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { + const double d = input_orient*rbf->invec[2]; + if (d >= 1.-2.*FTINY) + return; /* seems we have normal */ + if (d > bestd) { + near_rbf = rbf; + bestd = d; + } + } + } + if (mig_list != NULL) { /* need to be called first */ + fprintf(stderr, "%s: Late call to check_normal_incidence()\n", + progname); + exit(1); + } +#ifdef DEBUG + fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", + get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); +#endif + /* mirror nearest incidence */ + n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); + mir_rbf = (RBFNODE *)malloc(n); + if (mir_rbf == NULL) + goto memerr; + memcpy(mir_rbf, near_rbf, n); + mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ + mir_rbf->next = NULL; + rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); + nprocs = 1; /* compute migration matrix */ + if (mig_list != create_migration(mir_rbf, near_rbf)) + exit(1); /* XXX should never happen! */ + /* interpolate normal dist. */ + rbf = e_advect_rbf(mig_list, norm_vec, 2*near_rbf->nrbf); + nprocs = saved_nprocs; /* final clean-up */ + free(mir_rbf); + free(mig_list); + mig_list = near_rbf->ejl = NULL; + insert_dsf(rbf); /* insert interpolated normal */ + return; +memerr: + fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", + progname); + exit(1); +} /* Build our triangle mesh from recorded RBFs */ void @@ -449,6 +564,8 @@ build_mesh(void) double best2 = M_PI*M_PI; RBFNODE *shrt_edj[2]; RBFNODE *rbf0, *rbf1; + /* add normal if needed */ + check_normal_incidence(); /* check if isotropic */ if (single_plane_incident) { for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)