--- ray/src/cv/bsdfmesh.c 2013/11/08 03:42:13 2.14 +++ ray/src/cv/bsdfmesh.c 2014/02/18 16:06:51 2.15 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfmesh.c,v 2.14 2013/11/08 03:42:13 greg Exp $"; +static const char RCSid[] = "$Id: bsdfmesh.c,v 2.15 2014/02/18 16:06:51 greg Exp $"; #endif /* * Create BSDF advection mesh from radial basis functions. @@ -484,6 +484,114 @@ mesh_from_edge(MIGRATION *edge) } } } + +/* Add normal direction if missing */ +static void +check_normal_incidence(void) +{ + const int saved_nprocs = nprocs; + RBFNODE *near_rbf, *mir_rbf, *rbf; + double bestd; + int n, i, j; + + if (dsf_list == NULL) + return; /* XXX should be error? */ + near_rbf = dsf_list; + bestd = input_orient*near_rbf->invec[2]; + if (single_plane_incident) { /* ordered plane incidence? */ + if (bestd >= 1.-2.*FTINY) + return; /* already have normal */ + } else { + switch (inp_coverage) { + case INP_QUAD1: + case INP_QUAD2: + case INP_QUAD3: + case INP_QUAD4: + break; /* quadrilateral symmetry? */ + default: + return; /* else we can interpolate */ + } + for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { + const double d = input_orient*rbf->invec[2]; + if (d >= 1.-2.*FTINY) + return; /* seems we have normal */ + if (d > bestd) { + near_rbf = rbf; + bestd = d; + } + } + } + if (mig_list != NULL) { /* need to be called first */ + fprintf(stderr, "%s: Late call to check_normal_incidence()\n", + progname); + exit(1); + } +#ifdef DEBUG + fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", + get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); +#endif + /* mirror nearest incidence */ + n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); + mir_rbf = (RBFNODE *)malloc(n); + if (mir_rbf == NULL) + goto memerr; + memcpy(mir_rbf, near_rbf, n); + mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ + mir_rbf->next = NULL; + rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); + nprocs = 1; /* compute migration matrix */ + if (mig_list != create_migration(mir_rbf, near_rbf)) + exit(1); /* XXX should never happen! */ + n = 0; /* count migrating particles */ + for (i = 0; i < mtx_nrows(mig_list); i++) + for (j = 0; j < mtx_ncols(mig_list); j++) + n += (mtx_coef(mig_list,i,j) > FTINY); + rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); + if (rbf == NULL) + goto memerr; + rbf->next = NULL; rbf->ejl = NULL; + rbf->invec[0] = rbf->invec[1] = 0; rbf->invec[2] = 1.; + rbf->nrbf = n; + rbf->vtotal = .5 + .5*mig_list->rbfv[1]->vtotal/mig_list->rbfv[0]->vtotal; + n = 0; /* advect RBF lobes halfway */ + for (i = 0; i < mtx_nrows(mig_list); i++) { + const RBFVAL *rbf0i = &mig_list->rbfv[0]->rbfa[i]; + const float peak0 = rbf0i->peak; + const double rad0 = R2ANG(rbf0i->crad); + FVECT v0; + float mv; + ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); + for (j = 0; j < mtx_ncols(mig_list); j++) + if ((mv = mtx_coef(mig_list,i,j)) > FTINY) { + const RBFVAL *rbf1j = &mig_list->rbfv[1]->rbfa[j]; + double rad2; + FVECT v; + int pos[2]; + rad2 = R2ANG(rbf1j->crad); + rad2 = .5*(rad0*rad0 + rad2*rad2); + rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * + rad0*rad0/rad2; + rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); + ovec_from_pos(v, rbf1j->gx, rbf1j->gy); + geodesic(v, v0, v, .5, GEOD_REL); + pos_from_vec(pos, v); + rbf->rbfa[n].gx = pos[0]; + rbf->rbfa[n].gy = pos[1]; + ++n; + } + } + rbf->vtotal *= mig_list->rbfv[0]->vtotal; + nprocs = saved_nprocs; /* final clean-up */ + free(mir_rbf); + free(mig_list); + mig_list = near_rbf->ejl = NULL; + insert_dsf(rbf); /* insert interpolated normal */ + return; +memerr: + fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", + progname); + exit(1); +} /* Build our triangle mesh from recorded RBFs */ void @@ -492,6 +600,8 @@ build_mesh(void) double best2 = M_PI*M_PI; RBFNODE *shrt_edj[2]; RBFNODE *rbf0, *rbf1; + /* add normal if needed */ + check_normal_incidence(); /* check if isotropic */ if (single_plane_incident) { for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)