| 18 |
|
#include <string.h> |
| 19 |
|
#include <math.h> |
| 20 |
|
#include "bsdfrep.h" |
| 21 |
+ |
|
| 22 |
+ |
#ifndef NEIGH_FACT2 |
| 23 |
+ |
#define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */ |
| 24 |
+ |
#endif |
| 25 |
|
/* number of processes to run */ |
| 26 |
|
int nprocs = 1; |
| 27 |
|
/* number of children (-1 in child) */ |
| 28 |
|
static int nchild = 0; |
| 29 |
|
|
| 30 |
< |
/* Compute (and allocate) migration price matrix for optimization */ |
| 31 |
< |
static float * |
| 32 |
< |
price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf) |
| 30 |
> |
/* Compute average DSF value at the given radius from central vector */ |
| 31 |
> |
static double |
| 32 |
> |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) |
| 33 |
|
{ |
| 34 |
< |
float *pmtx = (float *)malloc(sizeof(float) * |
| 35 |
< |
from_rbf->nrbf * to_rbf->nrbf); |
| 36 |
< |
FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); |
| 37 |
< |
int i, j; |
| 38 |
< |
|
| 39 |
< |
if ((pmtx == NULL) | (vto == NULL)) { |
| 40 |
< |
fprintf(stderr, "%s: Out of memory in migration_costs()\n", |
| 41 |
< |
progname); |
| 42 |
< |
exit(1); |
| 34 |
> |
const int ninc = 12; |
| 35 |
> |
const double phinc = 2.*M_PI/ninc; |
| 36 |
> |
double sum = 0; |
| 37 |
> |
int n = 0; |
| 38 |
> |
FVECT tvec; |
| 39 |
> |
int i; |
| 40 |
> |
/* compute initial vector */ |
| 41 |
> |
if (output_orient*outvec[2] >= 1.-FTINY) { |
| 42 |
> |
tvec[0] = tvec[2] = 0; |
| 43 |
> |
tvec[1] = 1; |
| 44 |
> |
} else { |
| 45 |
> |
tvec[0] = tvec[1] = 0; |
| 46 |
> |
tvec[2] = 1; |
| 47 |
|
} |
| 48 |
< |
for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */ |
| 49 |
< |
ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); |
| 50 |
< |
|
| 51 |
< |
for (i = from_rbf->nrbf; i--; ) { |
| 52 |
< |
const double from_ang = R2ANG(from_rbf->rbfa[i].crad); |
| 53 |
< |
FVECT vfrom; |
| 54 |
< |
ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); |
| 55 |
< |
for (j = to_rbf->nrbf; j--; ) |
| 48 |
< |
pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) + |
| 49 |
< |
fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang); |
| 48 |
> |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD); |
| 49 |
> |
/* average surrounding DSF */ |
| 50 |
> |
for (i = 0; i < ninc; i++) { |
| 51 |
> |
if (i) spinvector(tvec, tvec, outvec, phinc); |
| 52 |
> |
if (tvec[2] > 0 ^ output_orient > 0) |
| 53 |
> |
continue; |
| 54 |
> |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); |
| 55 |
> |
++n; |
| 56 |
|
} |
| 57 |
< |
free(vto); |
| 58 |
< |
return(pmtx); |
| 57 |
> |
if (n < 2) /* should never happen! */ |
| 58 |
> |
return(sum); |
| 59 |
> |
return(sum/(double)n); |
| 60 |
|
} |
| 61 |
|
|
| 62 |
< |
/* Comparison routine needed for sorting price row */ |
| 56 |
< |
static const float *price_arr; |
| 57 |
< |
static int |
| 58 |
< |
msrt_cmp(const void *p1, const void *p2) |
| 59 |
< |
{ |
| 60 |
< |
float c1 = price_arr[*(const int *)p1]; |
| 61 |
< |
float c2 = price_arr[*(const int *)p2]; |
| 62 |
< |
|
| 63 |
< |
if (c1 > c2) return(1); |
| 64 |
< |
if (c1 < c2) return(-1); |
| 65 |
< |
return(0); |
| 66 |
< |
} |
| 67 |
< |
|
| 68 |
< |
/* Compute minimum (optimistic) cost for moving the given source material */ |
| 62 |
> |
/* Estimate single-lobe radius for DSF at the given outgoing angle */ |
| 63 |
|
static double |
| 64 |
< |
min_cost(double amt2move, const double *avail, const float *price, int n) |
| 64 |
> |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
| 65 |
|
{ |
| 66 |
< |
static int *price_sort = NULL; |
| 67 |
< |
static int n_alloc = 0; |
| 68 |
< |
double total_cost = 0; |
| 69 |
< |
int i; |
| 70 |
< |
|
| 71 |
< |
if (amt2move <= FTINY) /* pre-emptive check */ |
| 72 |
< |
return(0.); |
| 73 |
< |
if (n > n_alloc) { /* (re)allocate sort array */ |
| 74 |
< |
if (n_alloc) free(price_sort); |
| 75 |
< |
price_sort = (int *)malloc(sizeof(int)*n); |
| 76 |
< |
if (price_sort == NULL) { |
| 77 |
< |
fprintf(stderr, "%s: Out of memory in min_cost()\n", |
| 78 |
< |
progname); |
| 79 |
< |
exit(1); |
| 66 |
> |
const double rad_epsilon = 0.03; |
| 67 |
> |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
| 68 |
> |
COSF(outvec[2]); |
| 69 |
> |
double inside_rad = rad_epsilon; |
| 70 |
> |
double outside_rad = 0.5; |
| 71 |
> |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
| 72 |
> |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
| 73 |
> |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
| 74 |
> |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
| 75 |
> |
/* Newton's method (sort of) */ |
| 76 |
> |
do { |
| 77 |
> |
double test_rad = interp_rad; |
| 78 |
> |
double DSFtest; |
| 79 |
> |
if (test_rad >= outside_rad) |
| 80 |
> |
return(test_rad); |
| 81 |
> |
if (test_rad <= inside_rad) |
| 82 |
> |
return(test_rad*(test_rad>0)); |
| 83 |
> |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
| 84 |
> |
if (DSFtest > DSFtarget) { |
| 85 |
> |
inside_rad = test_rad; |
| 86 |
> |
DSFinside = DSFtest; |
| 87 |
> |
} else { |
| 88 |
> |
outside_rad = test_rad; |
| 89 |
> |
DSFoutside = DSFtest; |
| 90 |
|
} |
| 91 |
< |
n_alloc = n; |
| 92 |
< |
} |
| 93 |
< |
for (i = n; i--; ) |
| 94 |
< |
price_sort[i] = i; |
| 95 |
< |
price_arr = price; |
| 92 |
< |
qsort(price_sort, n, sizeof(int), &msrt_cmp); |
| 93 |
< |
/* move cheapest first */ |
| 94 |
< |
for (i = 0; i < n && amt2move > FTINY; i++) { |
| 95 |
< |
int d = price_sort[i]; |
| 96 |
< |
double amt = (amt2move < avail[d]) ? amt2move : avail[d]; |
| 97 |
< |
|
| 98 |
< |
total_cost += amt * price[d]; |
| 99 |
< |
amt2move -= amt; |
| 100 |
< |
} |
| 101 |
< |
return(total_cost); |
| 91 |
> |
if (DSFoutside >= DSFinside) |
| 92 |
> |
return(test_rad); |
| 93 |
> |
} while (outside_rad-inside_rad > rad_epsilon); |
| 94 |
> |
return(interp_rad); |
| 95 |
> |
#undef interp_rad |
| 96 |
|
} |
| 97 |
|
|
| 98 |
< |
/* Take a step in migration by choosing optimal bucket to transfer */ |
| 99 |
< |
static double |
| 100 |
< |
migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx) |
| 98 |
> |
/* Compute average BSDF peak from current DSF's */ |
| 99 |
> |
static void |
| 100 |
> |
comp_bsdf_spec(void) |
| 101 |
|
{ |
| 102 |
< |
const double maxamt = .1; |
| 103 |
< |
const double minamt = maxamt*.0001; |
| 104 |
< |
static double *src_cost = NULL; |
| 105 |
< |
static int n_alloc = 0; |
| 106 |
< |
struct { |
| 107 |
< |
int s, d; /* source and destination */ |
| 114 |
< |
double price; /* price estimate per amount moved */ |
| 115 |
< |
double amt; /* amount we can move */ |
| 116 |
< |
} cur, best; |
| 117 |
< |
int i; |
| 102 |
> |
const double max_hemi = 0.9; |
| 103 |
> |
double peak_sum = 0; |
| 104 |
> |
double rad_sum = 0; |
| 105 |
> |
int n = 0; |
| 106 |
> |
RBFNODE *rbf; |
| 107 |
> |
FVECT sdv; |
| 108 |
|
|
| 109 |
< |
if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */ |
| 110 |
< |
if (n_alloc) |
| 111 |
< |
free(src_cost); |
| 112 |
< |
src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig)); |
| 123 |
< |
if (src_cost == NULL) { |
| 124 |
< |
fprintf(stderr, "%s: Out of memory in migration_step()\n", |
| 125 |
< |
progname); |
| 126 |
< |
exit(1); |
| 127 |
< |
} |
| 128 |
< |
n_alloc = mtx_nrows(mig); |
| 109 |
> |
if (dsf_list == NULL) { |
| 110 |
> |
bsdf_spec_peak = 0; |
| 111 |
> |
bsdf_spec_rad = 0; |
| 112 |
> |
return; |
| 113 |
|
} |
| 114 |
< |
for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */ |
| 115 |
< |
src_cost[i] = min_cost(src_rem[i], dst_rem, |
| 116 |
< |
pmtx+i*mtx_ncols(mig), mtx_ncols(mig)); |
| 117 |
< |
|
| 118 |
< |
/* find best source & dest. */ |
| 119 |
< |
best.s = best.d = -1; best.price = FHUGE; best.amt = 0; |
| 120 |
< |
for (cur.s = mtx_nrows(mig); cur.s--; ) { |
| 137 |
< |
const float *price = pmtx + cur.s*mtx_ncols(mig); |
| 138 |
< |
double cost_others = 0; |
| 139 |
< |
if (src_rem[cur.s] < minamt) |
| 140 |
< |
continue; |
| 141 |
< |
cur.d = -1; /* examine cheapest dest. */ |
| 142 |
< |
for (i = mtx_ncols(mig); i--; ) |
| 143 |
< |
if (dst_rem[i] > minamt && |
| 144 |
< |
(cur.d < 0 || price[i] < price[cur.d])) |
| 145 |
< |
cur.d = i; |
| 146 |
< |
if (cur.d < 0) |
| 147 |
< |
return(.0); |
| 148 |
< |
if ((cur.price = price[cur.d]) >= best.price) |
| 149 |
< |
continue; /* no point checking further */ |
| 150 |
< |
cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? |
| 151 |
< |
src_rem[cur.s] : dst_rem[cur.d]; |
| 152 |
< |
if (cur.amt > maxamt) cur.amt = maxamt; |
| 153 |
< |
dst_rem[cur.d] -= cur.amt; /* add up differential costs */ |
| 154 |
< |
for (i = mtx_nrows(mig); i--; ) |
| 155 |
< |
if (i != cur.s) |
| 156 |
< |
cost_others += min_cost(src_rem[i], dst_rem, |
| 157 |
< |
price, mtx_ncols(mig)) |
| 158 |
< |
- src_cost[i]; |
| 159 |
< |
dst_rem[cur.d] += cur.amt; /* undo trial move */ |
| 160 |
< |
cur.price += cost_others/cur.amt; /* adjust effective price */ |
| 161 |
< |
if (cur.price < best.price) /* are we better than best? */ |
| 162 |
< |
best = cur; |
| 114 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 115 |
> |
sdv[0] = -rbf->invec[0]; |
| 116 |
> |
sdv[1] = -rbf->invec[1]; |
| 117 |
> |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
| 118 |
> |
peak_sum += eval_rbfrep(rbf, sdv); |
| 119 |
> |
rad_sum += est_DSFrad(rbf, sdv); |
| 120 |
> |
++n; |
| 121 |
|
} |
| 122 |
< |
if ((best.s < 0) | (best.d < 0)) |
| 123 |
< |
return(.0); |
| 124 |
< |
/* make the actual move */ |
| 125 |
< |
mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt; |
| 168 |
< |
src_rem[best.s] -= best.amt; |
| 169 |
< |
dst_rem[best.d] -= best.amt; |
| 170 |
< |
return(best.amt); |
| 122 |
> |
bsdf_spec_peak = peak_sum/(double)n; |
| 123 |
> |
bsdf_spec_rad = rad_sum/(double)n; |
| 124 |
> |
if ((2.*M_PI)*bsdf_spec_peak*bsdf_spec_rad*bsdf_spec_rad > max_hemi) |
| 125 |
> |
bsdf_spec_peak = max_hemi/((2.*M_PI)*bsdf_spec_rad*bsdf_spec_rad); |
| 126 |
|
} |
| 127 |
|
|
| 173 |
– |
#ifdef DEBUG |
| 174 |
– |
static char * |
| 175 |
– |
thetaphi(const FVECT v) |
| 176 |
– |
{ |
| 177 |
– |
static char buf[128]; |
| 178 |
– |
double theta, phi; |
| 179 |
– |
|
| 180 |
– |
theta = 180./M_PI*acos(v[2]); |
| 181 |
– |
phi = 180./M_PI*atan2(v[1],v[0]); |
| 182 |
– |
sprintf(buf, "(%.0f,%.0f)", theta, phi); |
| 183 |
– |
|
| 184 |
– |
return(buf); |
| 185 |
– |
} |
| 186 |
– |
#endif |
| 187 |
– |
|
| 128 |
|
/* Create a new migration holder (sharing memory for multiprocessing) */ |
| 129 |
|
static MIGRATION * |
| 130 |
|
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
| 212 |
|
if (pid < 0) { |
| 213 |
|
fprintf(stderr, "%s: cannot fork subprocess\n", |
| 214 |
|
progname); |
| 215 |
+ |
await_children(nchild); |
| 216 |
|
exit(1); |
| 217 |
|
} |
| 218 |
|
++nchild; /* subprocess started */ |
| 227 |
|
|
| 228 |
|
#endif /* ! _WIN32 */ |
| 229 |
|
|
| 230 |
+ |
/* Compute normalized distribution scattering functions for comparison */ |
| 231 |
+ |
static void |
| 232 |
+ |
compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1) |
| 233 |
+ |
{ |
| 234 |
+ |
const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal; |
| 235 |
+ |
const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal; |
| 236 |
+ |
int x, y; |
| 237 |
+ |
FVECT dv; |
| 238 |
+ |
|
| 239 |
+ |
for (x = GRIDRES; x--; ) |
| 240 |
+ |
for (y = GRIDRES; y--; ) { |
| 241 |
+ |
ovec_from_pos(dv, x, y); /* cube root (brightness) */ |
| 242 |
+ |
dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333); |
| 243 |
+ |
dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333); |
| 244 |
+ |
} |
| 245 |
+ |
} |
| 246 |
+ |
|
| 247 |
+ |
/* Compute neighborhood distance-squared (dissimilarity) */ |
| 248 |
+ |
static double |
| 249 |
+ |
neighborhood_dist2(int x0, int y0, int x1, int y1) |
| 250 |
+ |
{ |
| 251 |
+ |
int rad = GRIDRES>>5; |
| 252 |
+ |
double sum2 = 0.; |
| 253 |
+ |
double d; |
| 254 |
+ |
int p[4]; |
| 255 |
+ |
int i, j; |
| 256 |
+ |
/* check radius */ |
| 257 |
+ |
p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; |
| 258 |
+ |
for (i = 4; i--; ) { |
| 259 |
+ |
if (p[i] < rad) rad = p[i]; |
| 260 |
+ |
if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i]; |
| 261 |
+ |
} |
| 262 |
+ |
for (i = -rad; i <= rad; i++) |
| 263 |
+ |
for (j = -rad; j <= rad; j++) { |
| 264 |
+ |
d = dsf_grid[x0+i][y0+j].val[0] - |
| 265 |
+ |
dsf_grid[x1+i][y1+j].val[1]; |
| 266 |
+ |
sum2 += d*d; |
| 267 |
+ |
} |
| 268 |
+ |
return(sum2 / (4*rad*(rad+1) + 1)); |
| 269 |
+ |
} |
| 270 |
+ |
|
| 271 |
+ |
/* Compute distance between two RBF lobes */ |
| 272 |
+ |
double |
| 273 |
+ |
lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) |
| 274 |
+ |
{ |
| 275 |
+ |
FVECT vfrom, vto; |
| 276 |
+ |
double d, res; |
| 277 |
+ |
/* quadratic cost function */ |
| 278 |
+ |
ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); |
| 279 |
+ |
ovec_from_pos(vto, rbf2->gx, rbf2->gy); |
| 280 |
+ |
d = Acos(DOT(vfrom, vto)); |
| 281 |
+ |
res = d*d; |
| 282 |
+ |
d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); |
| 283 |
+ |
res += d*d; |
| 284 |
+ |
/* neighborhood difference */ |
| 285 |
+ |
res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, |
| 286 |
+ |
rbf2->gx, rbf2->gy ); |
| 287 |
+ |
return(res); |
| 288 |
+ |
} |
| 289 |
+ |
|
| 290 |
+ |
|
| 291 |
|
/* Compute and insert migration along directed edge (may fork child) */ |
| 292 |
|
static MIGRATION * |
| 293 |
|
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
| 294 |
|
{ |
| 293 |
– |
const double end_thresh = 0.1/(from_rbf->nrbf*to_rbf->nrbf); |
| 294 |
– |
const double check_thresh = 0.01; |
| 295 |
– |
const double rel_thresh = 5e-6; |
| 296 |
– |
float *pmtx; |
| 295 |
|
MIGRATION *newmig; |
| 296 |
< |
double *src_rem, *dst_rem; |
| 299 |
< |
double total_rem = 1., move_amt; |
| 300 |
< |
int i; |
| 296 |
> |
int i, j; |
| 297 |
|
/* check if exists already */ |
| 298 |
|
for (newmig = from_rbf->ejl; newmig != NULL; |
| 299 |
|
newmig = nextedge(from_rbf,newmig)) |
| 300 |
|
if (newmig->rbfv[1] == to_rbf) |
| 301 |
|
return(NULL); |
| 302 |
|
/* else allocate */ |
| 303 |
+ |
#ifdef DEBUG |
| 304 |
+ |
fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", |
| 305 |
+ |
get_theta180(from_rbf->invec), |
| 306 |
+ |
get_phi360(from_rbf->invec)); |
| 307 |
+ |
fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", |
| 308 |
+ |
get_theta180(to_rbf->invec), |
| 309 |
+ |
get_phi360(to_rbf->invec), |
| 310 |
+ |
from_rbf->nrbf, to_rbf->nrbf); |
| 311 |
+ |
#endif |
| 312 |
|
newmig = new_migration(from_rbf, to_rbf); |
| 313 |
|
if (run_subprocess()) |
| 314 |
|
return(newmig); /* child continues */ |
| 315 |
< |
pmtx = price_routes(from_rbf, to_rbf); |
| 316 |
< |
src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); |
| 317 |
< |
dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); |
| 318 |
< |
if ((src_rem == NULL) | (dst_rem == NULL)) { |
| 319 |
< |
fprintf(stderr, "%s: Out of memory in create_migration()\n", |
| 315 |
< |
progname); |
| 316 |
< |
exit(1); |
| 317 |
< |
} |
| 318 |
< |
#ifdef DEBUG |
| 319 |
< |
fprintf(stderr, "Building path from (theta,phi) %s ", |
| 320 |
< |
thetaphi(from_rbf->invec)); |
| 321 |
< |
fprintf(stderr, "to %s", thetaphi(to_rbf->invec)); |
| 322 |
< |
/* if (nchild) */ fputc('\n', stderr); |
| 323 |
< |
#endif |
| 324 |
< |
/* starting quantities */ |
| 325 |
< |
memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); |
| 326 |
< |
for (i = from_rbf->nrbf; i--; ) |
| 327 |
< |
src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; |
| 328 |
< |
for (i = to_rbf->nrbf; i--; ) |
| 329 |
< |
dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal; |
| 330 |
< |
do { /* move a bit at a time */ |
| 331 |
< |
move_amt = migration_step(newmig, src_rem, dst_rem, pmtx); |
| 332 |
< |
total_rem -= move_amt; |
| 333 |
< |
#ifdef DEBUG |
| 334 |
< |
if (!nchild) |
| 335 |
< |
/* fputc('.', stderr); */ |
| 336 |
< |
fprintf(stderr, "%.9f remaining...\r", total_rem); |
| 337 |
< |
#endif |
| 338 |
< |
} while (total_rem > end_thresh && (total_rem > check_thresh) | |
| 339 |
< |
(move_amt > rel_thresh*total_rem)); |
| 340 |
< |
#ifdef DEBUG |
| 341 |
< |
if (!nchild) fputs("\ndone.\n", stderr); |
| 342 |
< |
else fprintf(stderr, "finished with %.9f remaining\n", total_rem); |
| 343 |
< |
#endif |
| 315 |
> |
|
| 316 |
> |
/* compute transport plan */ |
| 317 |
> |
compute_nDSFs(from_rbf, to_rbf); |
| 318 |
> |
plan_transport(newmig); |
| 319 |
> |
|
| 320 |
|
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ |
| 321 |
< |
float nf = rbf_volume(&from_rbf->rbfa[i]); |
| 346 |
< |
int j; |
| 321 |
> |
double nf = rbf_volume(&from_rbf->rbfa[i]); |
| 322 |
|
if (nf <= FTINY) continue; |
| 323 |
|
nf = from_rbf->vtotal / nf; |
| 324 |
|
for (j = to_rbf->nrbf; j--; ) |
| 325 |
< |
newmig->mtx[mtx_ndx(newmig,i,j)] *= nf; |
| 325 |
> |
mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ |
| 326 |
|
} |
| 327 |
|
end_subprocess(); /* exit here if subprocess */ |
| 353 |
– |
free(pmtx); /* free working arrays */ |
| 354 |
– |
free(src_rem); |
| 355 |
– |
free(dst_rem); |
| 328 |
|
return(newmig); |
| 329 |
|
} |
| 330 |
|
|
| 354 |
|
return(vother[im_rev] != NULL); |
| 355 |
|
} |
| 356 |
|
|
| 357 |
< |
/* Find context hull vertex to complete triangle (oriented call) */ |
| 357 |
> |
/* Find convex hull vertex to complete triangle (oriented call) */ |
| 358 |
|
static RBFNODE * |
| 359 |
|
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) |
| 360 |
|
{ |
| 375 |
|
if (DOT(vp, vmid) <= FTINY) |
| 376 |
|
continue; /* wrong orientation */ |
| 377 |
|
area2 = .25*DOT(vp,vp); |
| 378 |
< |
VSUB(vp, rbf->invec, rbf0->invec); |
| 378 |
> |
VSUB(vp, rbf->invec, vmid); |
| 379 |
|
dprod = -DOT(vp, vejn); |
| 380 |
|
VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ |
| 381 |
|
dprod = DOT(vp, vmid) / VLEN(vp); |
| 414 |
|
ej1 = create_migration(tvert[0], edge->rbfv[1]); |
| 415 |
|
mesh_from_edge(ej0); |
| 416 |
|
mesh_from_edge(ej1); |
| 417 |
+ |
return; |
| 418 |
|
} |
| 419 |
< |
} else if (tvert[1] == NULL) { /* grow mesh on left */ |
| 419 |
> |
} |
| 420 |
> |
if (tvert[1] == NULL) { /* grow mesh on left */ |
| 421 |
|
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); |
| 422 |
|
if (tvert[1] != NULL) { |
| 423 |
|
if (tvert[1]->ord > edge->rbfv[0]->ord) |
| 433 |
|
} |
| 434 |
|
} |
| 435 |
|
} |
| 436 |
+ |
|
| 437 |
+ |
/* Add normal direction if missing */ |
| 438 |
+ |
static void |
| 439 |
+ |
check_normal_incidence(void) |
| 440 |
+ |
{ |
| 441 |
+ |
static FVECT norm_vec = {.0, .0, 1.}; |
| 442 |
+ |
const int saved_nprocs = nprocs; |
| 443 |
+ |
RBFNODE *near_rbf, *mir_rbf, *rbf; |
| 444 |
+ |
double bestd; |
| 445 |
+ |
int n; |
| 446 |
+ |
|
| 447 |
+ |
if (dsf_list == NULL) |
| 448 |
+ |
return; /* XXX should be error? */ |
| 449 |
+ |
near_rbf = dsf_list; |
| 450 |
+ |
bestd = input_orient*near_rbf->invec[2]; |
| 451 |
+ |
if (single_plane_incident) { /* ordered plane incidence? */ |
| 452 |
+ |
if (bestd >= 1.-2.*FTINY) |
| 453 |
+ |
return; /* already have normal */ |
| 454 |
+ |
} else { |
| 455 |
+ |
switch (inp_coverage) { |
| 456 |
+ |
case INP_QUAD1: |
| 457 |
+ |
case INP_QUAD2: |
| 458 |
+ |
case INP_QUAD3: |
| 459 |
+ |
case INP_QUAD4: |
| 460 |
+ |
break; /* quadrilateral symmetry? */ |
| 461 |
+ |
default: |
| 462 |
+ |
return; /* else we can interpolate */ |
| 463 |
+ |
} |
| 464 |
+ |
for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { |
| 465 |
+ |
const double d = input_orient*rbf->invec[2]; |
| 466 |
+ |
if (d >= 1.-2.*FTINY) |
| 467 |
+ |
return; /* seems we have normal */ |
| 468 |
+ |
if (d > bestd) { |
| 469 |
+ |
near_rbf = rbf; |
| 470 |
+ |
bestd = d; |
| 471 |
+ |
} |
| 472 |
+ |
} |
| 473 |
+ |
} |
| 474 |
+ |
if (mig_list != NULL) { /* need to be called first */ |
| 475 |
+ |
fprintf(stderr, "%s: Late call to check_normal_incidence()\n", |
| 476 |
+ |
progname); |
| 477 |
+ |
exit(1); |
| 478 |
+ |
} |
| 479 |
+ |
#ifdef DEBUG |
| 480 |
+ |
fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", |
| 481 |
+ |
get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); |
| 482 |
+ |
#endif |
| 483 |
+ |
/* mirror nearest incidence */ |
| 484 |
+ |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); |
| 485 |
+ |
mir_rbf = (RBFNODE *)malloc(n); |
| 486 |
+ |
if (mir_rbf == NULL) |
| 487 |
+ |
goto memerr; |
| 488 |
+ |
memcpy(mir_rbf, near_rbf, n); |
| 489 |
+ |
mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ |
| 490 |
+ |
mir_rbf->next = NULL; |
| 491 |
+ |
mir_rbf->ejl = NULL; |
| 492 |
+ |
rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); |
| 493 |
+ |
nprocs = 1; /* compute migration matrix */ |
| 494 |
+ |
if (create_migration(mir_rbf, near_rbf) == NULL) |
| 495 |
+ |
exit(1); /* XXX should never happen! */ |
| 496 |
+ |
norm_vec[2] = input_orient; /* interpolate normal dist. */ |
| 497 |
+ |
rbf = e_advect_rbf(mig_list, norm_vec, 0); |
| 498 |
+ |
nprocs = saved_nprocs; /* final clean-up */ |
| 499 |
+ |
free(mir_rbf); |
| 500 |
+ |
free(mig_list); |
| 501 |
+ |
mig_list = near_rbf->ejl = NULL; |
| 502 |
+ |
insert_dsf(rbf); /* insert interpolated normal */ |
| 503 |
+ |
return; |
| 504 |
+ |
memerr: |
| 505 |
+ |
fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", |
| 506 |
+ |
progname); |
| 507 |
+ |
exit(1); |
| 508 |
+ |
} |
| 509 |
|
|
| 510 |
|
/* Build our triangle mesh from recorded RBFs */ |
| 511 |
|
void |
| 514 |
|
double best2 = M_PI*M_PI; |
| 515 |
|
RBFNODE *shrt_edj[2]; |
| 516 |
|
RBFNODE *rbf0, *rbf1; |
| 517 |
+ |
/* average specular peak */ |
| 518 |
+ |
comp_bsdf_spec(); |
| 519 |
+ |
/* add normal if needed */ |
| 520 |
+ |
check_normal_incidence(); |
| 521 |
|
/* check if isotropic */ |
| 522 |
|
if (single_plane_incident) { |
| 523 |
|
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |