1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdfmesh.c,v 2.34 2016/01/29 16:21:55 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Create BSDF advection mesh from radial basis functions. |
6 |
* |
7 |
* G. Ward |
8 |
*/ |
9 |
|
10 |
#ifndef _WIN32 |
11 |
#include <unistd.h> |
12 |
#include <sys/wait.h> |
13 |
#include <sys/mman.h> |
14 |
#endif |
15 |
#define _USE_MATH_DEFINES |
16 |
#include <stdio.h> |
17 |
#include <stdlib.h> |
18 |
#include <string.h> |
19 |
#include <math.h> |
20 |
#include "bsdfrep.h" |
21 |
|
22 |
#ifndef NEIGH_FACT2 |
23 |
#define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */ |
24 |
#endif |
25 |
/* number of processes to run */ |
26 |
int nprocs = 1; |
27 |
/* number of children (-1 in child) */ |
28 |
static int nchild = 0; |
29 |
|
30 |
/* Compute average DSF value at the given radius from central vector */ |
31 |
static double |
32 |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) |
33 |
{ |
34 |
const int ninc = 12; |
35 |
const double phinc = 2.*M_PI/ninc; |
36 |
double sum = 0; |
37 |
int n = 0; |
38 |
FVECT tvec; |
39 |
int i; |
40 |
/* compute initial vector */ |
41 |
if (output_orient*outvec[2] >= 1.-FTINY) { |
42 |
tvec[0] = tvec[2] = 0; |
43 |
tvec[1] = 1; |
44 |
} else { |
45 |
tvec[0] = tvec[1] = 0; |
46 |
tvec[2] = 1; |
47 |
} |
48 |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD); |
49 |
/* average surrounding DSF */ |
50 |
for (i = 0; i < ninc; i++) { |
51 |
if (i) spinvector(tvec, tvec, outvec, phinc); |
52 |
if (tvec[2] > 0 ^ output_orient > 0) |
53 |
continue; |
54 |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); |
55 |
++n; |
56 |
} |
57 |
if (n < 2) /* should never happen! */ |
58 |
return(sum); |
59 |
return(sum/(double)n); |
60 |
} |
61 |
|
62 |
/* Estimate single-lobe radius for DSF at the given outgoing angle */ |
63 |
static double |
64 |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
65 |
{ |
66 |
const double rad_epsilon = 0.03; |
67 |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
68 |
COSF(outvec[2]); |
69 |
double inside_rad = rad_epsilon; |
70 |
double outside_rad = 0.5; |
71 |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
72 |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
73 |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
74 |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
75 |
/* Newton's method (sort of) */ |
76 |
do { |
77 |
double test_rad = interp_rad; |
78 |
double DSFtest; |
79 |
if (test_rad >= outside_rad) |
80 |
return(test_rad); |
81 |
if (test_rad <= inside_rad) |
82 |
return(test_rad*(test_rad>0)); |
83 |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
84 |
if (DSFtest > DSFtarget) { |
85 |
inside_rad = test_rad; |
86 |
DSFinside = DSFtest; |
87 |
} else { |
88 |
outside_rad = test_rad; |
89 |
DSFoutside = DSFtest; |
90 |
} |
91 |
if (DSFoutside >= DSFinside) |
92 |
return(test_rad); |
93 |
} while (outside_rad-inside_rad > rad_epsilon); |
94 |
return(interp_rad); |
95 |
#undef interp_rad |
96 |
} |
97 |
|
98 |
static int |
99 |
dbl_cmp(const void *p1, const void *p2) |
100 |
{ |
101 |
double d1 = *(const double *)p1; |
102 |
double d2 = *(const double *)p2; |
103 |
|
104 |
if (d1 > d2) return(1); |
105 |
if (d1 < d2) return(-1); |
106 |
return(0); |
107 |
} |
108 |
|
109 |
/* Compute average BSDF peak from current DSF's */ |
110 |
static void |
111 |
comp_bsdf_spec(void) |
112 |
{ |
113 |
double vmod_sum = 0; |
114 |
double rad_sum = 0; |
115 |
int n = 0; |
116 |
double *cost_list = NULL; |
117 |
double max_cost = 1.; |
118 |
RBFNODE *rbf; |
119 |
FVECT sdv; |
120 |
/* grazing 25th percentile */ |
121 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
122 |
n++; |
123 |
if (n >= 10) |
124 |
cost_list = (double *)malloc(sizeof(double)*n); |
125 |
if (cost_list == NULL) { |
126 |
bsdf_spec_val = 0; |
127 |
bsdf_spec_rad = 0; |
128 |
return; |
129 |
} |
130 |
n = 0; |
131 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
132 |
cost_list[n++] = rbf->invec[2]*input_orient; |
133 |
qsort(cost_list, n, sizeof(double), dbl_cmp); |
134 |
max_cost = cost_list[(n+3)/4]; |
135 |
free(cost_list); |
136 |
n = 0; |
137 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
138 |
double this_rad, cosfact, vest; |
139 |
if (rbf->invec[2]*input_orient > max_cost) |
140 |
continue; |
141 |
sdv[0] = -rbf->invec[0]; |
142 |
sdv[1] = -rbf->invec[1]; |
143 |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
144 |
this_rad = est_DSFrad(rbf, sdv); |
145 |
cosfact = COSF(sdv[2]); |
146 |
vest = eval_rbfrep(rbf, sdv) * cosfact * |
147 |
(2*M_PI) * this_rad*this_rad; |
148 |
if (vest > rbf->vtotal) |
149 |
vest = rbf->vtotal; |
150 |
vmod_sum += vest / cosfact; |
151 |
rad_sum += this_rad; |
152 |
++n; |
153 |
} |
154 |
bsdf_spec_rad = rad_sum/(double)n; |
155 |
bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad); |
156 |
} |
157 |
|
158 |
/* Create a new migration holder (sharing memory for multiprocessing) */ |
159 |
static MIGRATION * |
160 |
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
161 |
{ |
162 |
size_t memlen = sizeof(MIGRATION) + |
163 |
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); |
164 |
MIGRATION *newmig; |
165 |
#ifdef _WIN32 |
166 |
if (nprocs > 1) |
167 |
fprintf(stderr, "%s: warning - multiprocessing not supported\n", |
168 |
progname); |
169 |
nprocs = 1; |
170 |
newmig = (MIGRATION *)malloc(memlen); |
171 |
#else |
172 |
if (nprocs <= 1) { /* single process? */ |
173 |
newmig = (MIGRATION *)malloc(memlen); |
174 |
} else { /* else need to share memory */ |
175 |
newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE, |
176 |
MAP_ANON|MAP_SHARED, -1, 0); |
177 |
if ((void *)newmig == MAP_FAILED) |
178 |
newmig = NULL; |
179 |
} |
180 |
#endif |
181 |
if (newmig == NULL) { |
182 |
fprintf(stderr, "%s: cannot allocate new migration\n", progname); |
183 |
exit(1); |
184 |
} |
185 |
newmig->rbfv[0] = from_rbf; |
186 |
newmig->rbfv[1] = to_rbf; |
187 |
/* insert in edge lists */ |
188 |
newmig->enxt[0] = from_rbf->ejl; |
189 |
from_rbf->ejl = newmig; |
190 |
newmig->enxt[1] = to_rbf->ejl; |
191 |
to_rbf->ejl = newmig; |
192 |
newmig->next = mig_list; /* push onto global list */ |
193 |
return(mig_list = newmig); |
194 |
} |
195 |
|
196 |
#ifdef _WIN32 |
197 |
#define await_children(n) (void)(n) |
198 |
#define run_subprocess() 0 |
199 |
#define end_subprocess() (void)0 |
200 |
#else |
201 |
|
202 |
/* Wait for the specified number of child processes to complete */ |
203 |
static void |
204 |
await_children(int n) |
205 |
{ |
206 |
int exit_status = 0; |
207 |
|
208 |
if (n > nchild) |
209 |
n = nchild; |
210 |
while (n-- > 0) { |
211 |
int status; |
212 |
if (wait(&status) < 0) { |
213 |
fprintf(stderr, "%s: missing child(ren)!\n", progname); |
214 |
nchild = 0; |
215 |
break; |
216 |
} |
217 |
--nchild; |
218 |
if (status) { /* something wrong */ |
219 |
if ((status = WEXITSTATUS(status))) |
220 |
exit_status = status; |
221 |
else |
222 |
exit_status += !exit_status; |
223 |
fprintf(stderr, "%s: subprocess died\n", progname); |
224 |
n = nchild; /* wait for the rest */ |
225 |
} |
226 |
} |
227 |
if (exit_status) |
228 |
exit(exit_status); |
229 |
} |
230 |
|
231 |
/* Start child process if multiprocessing selected */ |
232 |
static pid_t |
233 |
run_subprocess(void) |
234 |
{ |
235 |
int status; |
236 |
pid_t pid; |
237 |
|
238 |
if (nprocs <= 1) /* any children requested? */ |
239 |
return(0); |
240 |
await_children(nchild + 1 - nprocs); /* free up child process */ |
241 |
if ((pid = fork())) { |
242 |
if (pid < 0) { |
243 |
fprintf(stderr, "%s: cannot fork subprocess\n", |
244 |
progname); |
245 |
await_children(nchild); |
246 |
exit(1); |
247 |
} |
248 |
++nchild; /* subprocess started */ |
249 |
return(pid); |
250 |
} |
251 |
nchild = -1; |
252 |
return(0); /* put child to work */ |
253 |
} |
254 |
|
255 |
/* If we are in subprocess, call exit */ |
256 |
#define end_subprocess() if (nchild < 0) _exit(0); else |
257 |
|
258 |
#endif /* ! _WIN32 */ |
259 |
|
260 |
/* Compute normalized distribution scattering functions for comparison */ |
261 |
static void |
262 |
compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1) |
263 |
{ |
264 |
const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal; |
265 |
const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal; |
266 |
int x, y; |
267 |
FVECT dv; |
268 |
|
269 |
for (x = GRIDRES; x--; ) |
270 |
for (y = GRIDRES; y--; ) { |
271 |
ovec_from_pos(dv, x, y); /* cube root (brightness) */ |
272 |
dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333); |
273 |
dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333); |
274 |
} |
275 |
} |
276 |
|
277 |
/* Compute neighborhood distance-squared (dissimilarity) */ |
278 |
static double |
279 |
neighborhood_dist2(int x0, int y0, int x1, int y1) |
280 |
{ |
281 |
int rad = GRIDRES>>5; |
282 |
double sum2 = 0.; |
283 |
double d; |
284 |
int p[4]; |
285 |
int i, j; |
286 |
/* check radius */ |
287 |
p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; |
288 |
for (i = 4; i--; ) { |
289 |
if (p[i] < rad) rad = p[i]; |
290 |
if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i]; |
291 |
} |
292 |
for (i = -rad; i <= rad; i++) |
293 |
for (j = -rad; j <= rad; j++) { |
294 |
d = dsf_grid[x0+i][y0+j].val[0] - |
295 |
dsf_grid[x1+i][y1+j].val[1]; |
296 |
sum2 += d*d; |
297 |
} |
298 |
return(sum2 / (4*rad*(rad+1) + 1)); |
299 |
} |
300 |
|
301 |
/* Compute distance between two RBF lobes */ |
302 |
double |
303 |
lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) |
304 |
{ |
305 |
FVECT vfrom, vto; |
306 |
double d, res; |
307 |
/* quadratic cost function */ |
308 |
ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); |
309 |
ovec_from_pos(vto, rbf2->gx, rbf2->gy); |
310 |
d = Acos(DOT(vfrom, vto)); |
311 |
res = d*d; |
312 |
d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); |
313 |
res += d*d; |
314 |
/* neighborhood difference */ |
315 |
res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, |
316 |
rbf2->gx, rbf2->gy ); |
317 |
return(res); |
318 |
} |
319 |
|
320 |
|
321 |
/* Compute and insert migration along directed edge (may fork child) */ |
322 |
static MIGRATION * |
323 |
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
324 |
{ |
325 |
MIGRATION *newmig; |
326 |
int i, j; |
327 |
/* check if exists already */ |
328 |
for (newmig = from_rbf->ejl; newmig != NULL; |
329 |
newmig = nextedge(from_rbf,newmig)) |
330 |
if (newmig->rbfv[1] == to_rbf) |
331 |
return(NULL); |
332 |
/* else allocate */ |
333 |
#ifdef DEBUG |
334 |
fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", |
335 |
get_theta180(from_rbf->invec), |
336 |
get_phi360(from_rbf->invec)); |
337 |
fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", |
338 |
get_theta180(to_rbf->invec), |
339 |
get_phi360(to_rbf->invec), |
340 |
from_rbf->nrbf, to_rbf->nrbf); |
341 |
#endif |
342 |
newmig = new_migration(from_rbf, to_rbf); |
343 |
if (run_subprocess()) |
344 |
return(newmig); /* child continues */ |
345 |
|
346 |
/* compute transport plan */ |
347 |
compute_nDSFs(from_rbf, to_rbf); |
348 |
plan_transport(newmig); |
349 |
|
350 |
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ |
351 |
double nf = rbf_volume(&from_rbf->rbfa[i]); |
352 |
if (nf <= FTINY) continue; |
353 |
nf = from_rbf->vtotal / nf; |
354 |
for (j = to_rbf->nrbf; j--; ) |
355 |
mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ |
356 |
} |
357 |
end_subprocess(); /* exit here if subprocess */ |
358 |
return(newmig); |
359 |
} |
360 |
|
361 |
/* Check if prospective vertex would create overlapping triangle */ |
362 |
static int |
363 |
overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv) |
364 |
{ |
365 |
const MIGRATION *ej; |
366 |
RBFNODE *vother[2]; |
367 |
int im_rev; |
368 |
/* find shared edge in mesh */ |
369 |
for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) { |
370 |
const RBFNODE *tv = opp_rbf(pv,ej); |
371 |
if (tv == bv0) { |
372 |
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
373 |
ej->rbfv[1]->invec, bv1->invec); |
374 |
break; |
375 |
} |
376 |
if (tv == bv1) { |
377 |
im_rev = is_rev_tri(ej->rbfv[0]->invec, |
378 |
ej->rbfv[1]->invec, bv0->invec); |
379 |
break; |
380 |
} |
381 |
} |
382 |
if (!get_triangles(vother, ej)) /* triangle on same side? */ |
383 |
return(0); |
384 |
return(vother[im_rev] != NULL); |
385 |
} |
386 |
|
387 |
/* Find convex hull vertex to complete triangle (oriented call) */ |
388 |
static RBFNODE * |
389 |
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) |
390 |
{ |
391 |
FVECT vmid, vejn, vp; |
392 |
RBFNODE *rbf, *rbfbest = NULL; |
393 |
double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5; |
394 |
|
395 |
VSUB(vejn, rbf1->invec, rbf0->invec); |
396 |
VADD(vmid, rbf0->invec, rbf1->invec); |
397 |
if (normalize(vejn) == 0 || normalize(vmid) == 0) |
398 |
return(NULL); |
399 |
/* XXX exhaustive search */ |
400 |
/* Find triangle with minimum rotation from perpendicular */ |
401 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
402 |
if ((rbf == rbf0) | (rbf == rbf1)) |
403 |
continue; |
404 |
tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec); |
405 |
if (DOT(vp, vmid) <= FTINY) |
406 |
continue; /* wrong orientation */ |
407 |
area2 = .25*DOT(vp,vp); |
408 |
VSUB(vp, rbf->invec, vmid); |
409 |
dprod = -DOT(vp, vejn); |
410 |
VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ |
411 |
dprod = DOT(vp, vmid) / VLEN(vp); |
412 |
if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2))) |
413 |
continue; /* found better already */ |
414 |
if (overlaps_tri(rbf0, rbf1, rbf)) |
415 |
continue; /* overlaps another triangle */ |
416 |
rbfbest = rbf; |
417 |
bestdprod = dprod; /* new one to beat */ |
418 |
bestarea2 = area2; |
419 |
} |
420 |
return(rbfbest); |
421 |
} |
422 |
|
423 |
/* Create new migration edge and grow mesh recursively around it */ |
424 |
static void |
425 |
mesh_from_edge(MIGRATION *edge) |
426 |
{ |
427 |
MIGRATION *ej0, *ej1; |
428 |
RBFNODE *tvert[2]; |
429 |
|
430 |
if (edge == NULL) |
431 |
return; |
432 |
/* triangle on either side? */ |
433 |
get_triangles(tvert, edge); |
434 |
if (tvert[0] == NULL) { /* grow mesh on right */ |
435 |
tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]); |
436 |
if (tvert[0] != NULL) { |
437 |
if (tvert[0]->ord > edge->rbfv[0]->ord) |
438 |
ej0 = create_migration(edge->rbfv[0], tvert[0]); |
439 |
else |
440 |
ej0 = create_migration(tvert[0], edge->rbfv[0]); |
441 |
if (tvert[0]->ord > edge->rbfv[1]->ord) |
442 |
ej1 = create_migration(edge->rbfv[1], tvert[0]); |
443 |
else |
444 |
ej1 = create_migration(tvert[0], edge->rbfv[1]); |
445 |
mesh_from_edge(ej0); |
446 |
mesh_from_edge(ej1); |
447 |
return; |
448 |
} |
449 |
} |
450 |
if (tvert[1] == NULL) { /* grow mesh on left */ |
451 |
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); |
452 |
if (tvert[1] != NULL) { |
453 |
if (tvert[1]->ord > edge->rbfv[0]->ord) |
454 |
ej0 = create_migration(edge->rbfv[0], tvert[1]); |
455 |
else |
456 |
ej0 = create_migration(tvert[1], edge->rbfv[0]); |
457 |
if (tvert[1]->ord > edge->rbfv[1]->ord) |
458 |
ej1 = create_migration(edge->rbfv[1], tvert[1]); |
459 |
else |
460 |
ej1 = create_migration(tvert[1], edge->rbfv[1]); |
461 |
mesh_from_edge(ej0); |
462 |
mesh_from_edge(ej1); |
463 |
} |
464 |
} |
465 |
} |
466 |
|
467 |
/* Add normal direction if missing */ |
468 |
static void |
469 |
check_normal_incidence(void) |
470 |
{ |
471 |
static FVECT norm_vec = {.0, .0, 1.}; |
472 |
const int saved_nprocs = nprocs; |
473 |
RBFNODE *near_rbf, *mir_rbf, *rbf; |
474 |
double bestd; |
475 |
int n; |
476 |
|
477 |
if (dsf_list == NULL) |
478 |
return; /* XXX should be error? */ |
479 |
near_rbf = dsf_list; |
480 |
bestd = input_orient*near_rbf->invec[2]; |
481 |
if (single_plane_incident) { /* ordered plane incidence? */ |
482 |
if (bestd >= 1.-2.*FTINY) |
483 |
return; /* already have normal */ |
484 |
} else { |
485 |
switch (inp_coverage) { |
486 |
case INP_QUAD1: |
487 |
case INP_QUAD2: |
488 |
case INP_QUAD3: |
489 |
case INP_QUAD4: |
490 |
break; /* quadrilateral symmetry? */ |
491 |
default: |
492 |
return; /* else we can interpolate */ |
493 |
} |
494 |
for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { |
495 |
const double d = input_orient*rbf->invec[2]; |
496 |
if (d >= 1.-2.*FTINY) |
497 |
return; /* seems we have normal */ |
498 |
if (d > bestd) { |
499 |
near_rbf = rbf; |
500 |
bestd = d; |
501 |
} |
502 |
} |
503 |
} |
504 |
if (mig_list != NULL) { /* need to be called first */ |
505 |
fprintf(stderr, "%s: Late call to check_normal_incidence()\n", |
506 |
progname); |
507 |
exit(1); |
508 |
} |
509 |
#ifdef DEBUG |
510 |
fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", |
511 |
get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); |
512 |
#endif |
513 |
/* mirror nearest incidence */ |
514 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); |
515 |
mir_rbf = (RBFNODE *)malloc(n); |
516 |
if (mir_rbf == NULL) |
517 |
goto memerr; |
518 |
memcpy(mir_rbf, near_rbf, n); |
519 |
mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ |
520 |
mir_rbf->next = NULL; |
521 |
mir_rbf->ejl = NULL; |
522 |
rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); |
523 |
nprocs = 1; /* compute migration matrix */ |
524 |
if (create_migration(mir_rbf, near_rbf) == NULL) |
525 |
exit(1); /* XXX should never happen! */ |
526 |
norm_vec[2] = input_orient; /* interpolate normal dist. */ |
527 |
rbf = e_advect_rbf(mig_list, norm_vec, 0); |
528 |
nprocs = saved_nprocs; /* final clean-up */ |
529 |
free(mir_rbf); |
530 |
free(mig_list); |
531 |
mig_list = near_rbf->ejl = NULL; |
532 |
insert_dsf(rbf); /* insert interpolated normal */ |
533 |
return; |
534 |
memerr: |
535 |
fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", |
536 |
progname); |
537 |
exit(1); |
538 |
} |
539 |
|
540 |
/* Build our triangle mesh from recorded RBFs */ |
541 |
void |
542 |
build_mesh(void) |
543 |
{ |
544 |
double best2 = M_PI*M_PI; |
545 |
RBFNODE *shrt_edj[2]; |
546 |
RBFNODE *rbf0, *rbf1; |
547 |
/* average specular peak */ |
548 |
comp_bsdf_spec(); |
549 |
/* add normal if needed */ |
550 |
check_normal_incidence(); |
551 |
/* check if isotropic */ |
552 |
if (single_plane_incident) { |
553 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
554 |
if (rbf0->next != NULL) |
555 |
create_migration(rbf0, rbf0->next); |
556 |
await_children(nchild); |
557 |
return; |
558 |
} |
559 |
shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ |
560 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
561 |
for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { |
562 |
double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); |
563 |
if (dist2 < best2) { |
564 |
shrt_edj[0] = rbf0; |
565 |
shrt_edj[1] = rbf1; |
566 |
best2 = dist2; |
567 |
} |
568 |
} |
569 |
if (shrt_edj[0] == NULL) { |
570 |
fprintf(stderr, "%s: Cannot find shortest edge\n", progname); |
571 |
exit(1); |
572 |
} |
573 |
/* build mesh from this edge */ |
574 |
if (shrt_edj[0]->ord < shrt_edj[1]->ord) |
575 |
mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); |
576 |
else |
577 |
mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); |
578 |
/* complete migrations */ |
579 |
await_children(nchild); |
580 |
} |