| 95 |
|
#undef interp_rad |
| 96 |
|
} |
| 97 |
|
|
| 98 |
< |
/* Compute average BSDF peak from current DSF's */ |
| 98 |
> |
static int |
| 99 |
> |
dbl_cmp(const void *p1, const void *p2) |
| 100 |
> |
{ |
| 101 |
> |
double d1 = *(const double *)p1; |
| 102 |
> |
double d2 = *(const double *)p2; |
| 103 |
> |
|
| 104 |
> |
if (d1 > d2) return(1); |
| 105 |
> |
if (d1 < d2) return(-1); |
| 106 |
> |
return(0); |
| 107 |
> |
} |
| 108 |
> |
|
| 109 |
> |
/* Conservative estimate of average BSDF value from current DSF's */ |
| 110 |
|
static void |
| 111 |
|
comp_bsdf_spec(void) |
| 112 |
|
{ |
| 113 |
< |
double peak_sum = 0; |
| 113 |
> |
double vmod_sum = 0; |
| 114 |
|
double rad_sum = 0; |
| 115 |
|
int n = 0; |
| 116 |
+ |
double *cost_list = NULL; |
| 117 |
+ |
double max_cost = 1.; |
| 118 |
|
RBFNODE *rbf; |
| 119 |
|
FVECT sdv; |
| 120 |
< |
|
| 121 |
< |
if (dsf_list == NULL) { |
| 122 |
< |
bsdf_spec_peak = 0; |
| 120 |
> |
/* sort by incident altitude */ |
| 121 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 122 |
> |
n++; |
| 123 |
> |
if (n >= 10) |
| 124 |
> |
cost_list = (double *)malloc(sizeof(double)*n); |
| 125 |
> |
if (cost_list == NULL) { |
| 126 |
> |
bsdf_spec_val = 0; |
| 127 |
|
bsdf_spec_rad = 0; |
| 128 |
|
return; |
| 129 |
|
} |
| 130 |
+ |
n = 0; |
| 131 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 132 |
+ |
cost_list[n++] = rbf->invec[2]*input_orient; |
| 133 |
+ |
qsort(cost_list, n, sizeof(double), dbl_cmp); |
| 134 |
+ |
max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */ |
| 135 |
+ |
free(cost_list); |
| 136 |
+ |
n = 0; |
| 137 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 138 |
+ |
double this_rad, cosfact, vest; |
| 139 |
+ |
if (rbf->invec[2]*input_orient > max_cost) |
| 140 |
+ |
continue; |
| 141 |
|
sdv[0] = -rbf->invec[0]; |
| 142 |
|
sdv[1] = -rbf->invec[1]; |
| 143 |
|
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
| 144 |
< |
peak_sum += eval_rbfrep(rbf, sdv); |
| 145 |
< |
rad_sum += est_DSFrad(rbf, sdv); |
| 144 |
> |
cosfact = COSF(sdv[2]); |
| 145 |
> |
this_rad = est_DSFrad(rbf, sdv); |
| 146 |
> |
vest = eval_rbfrep(rbf, sdv) * cosfact * |
| 147 |
> |
(2.*M_PI) * this_rad*this_rad; |
| 148 |
> |
if (vest > rbf->vtotal) /* don't over-estimate energy */ |
| 149 |
> |
vest = rbf->vtotal; |
| 150 |
> |
vmod_sum += vest / cosfact; /* remove cosine factor */ |
| 151 |
> |
rad_sum += this_rad; |
| 152 |
|
++n; |
| 153 |
|
} |
| 121 |
– |
bsdf_spec_peak = peak_sum/(double)n; |
| 154 |
|
bsdf_spec_rad = rad_sum/(double)n; |
| 155 |
+ |
bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad); |
| 156 |
|
} |
| 157 |
|
|
| 158 |
|
/* Create a new migration holder (sharing memory for multiprocessing) */ |