--- ray/src/cv/bsdfmesh.c 2012/10/19 04:14:29 2.1 +++ ray/src/cv/bsdfmesh.c 2019/04/23 14:30:36 2.40 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfmesh.c,v 2.1 2012/10/19 04:14:29 greg Exp $"; +static const char RCSid[] = "$Id: bsdfmesh.c,v 2.40 2019/04/23 14:30:36 greg Exp $"; #endif /* * Create BSDF advection mesh from radial basis functions. @@ -7,7 +7,7 @@ static const char RCSid[] = "$Id: bsdfmesh.c,v 2.1 201 * G. Ward */ -#ifndef _WIN32 +#if !defined(_WIN32) && !defined(_WIN64) #include #include #include @@ -18,173 +18,140 @@ static const char RCSid[] = "$Id: bsdfmesh.c,v 2.1 201 #include #include #include "bsdfrep.h" + +#ifndef NEIGH_FACT2 +#define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */ +#endif /* number of processes to run */ int nprocs = 1; /* number of children (-1 in child) */ static int nchild = 0; -/* Compute (and allocate) migration price matrix for optimization */ -static float * -price_routes(const RBFNODE *from_rbf, const RBFNODE *to_rbf) +/* Compute average DSF value at the given radius from central vector */ +static double +eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) { - float *pmtx = (float *)malloc(sizeof(float) * - from_rbf->nrbf * to_rbf->nrbf); - FVECT *vto = (FVECT *)malloc(sizeof(FVECT) * to_rbf->nrbf); - int i, j; - - if ((pmtx == NULL) | (vto == NULL)) { - fprintf(stderr, "%s: Out of memory in migration_costs()\n", - progname); - exit(1); + const int ninc = 12; + const double phinc = 2.*M_PI/ninc; + double sum = 0; + int n = 0; + FVECT tvec; + int i; + /* compute initial vector */ + if (output_orient*outvec[2] >= 1.-FTINY) { + tvec[0] = tvec[2] = 0; + tvec[1] = 1; + } else { + tvec[0] = tvec[1] = 0; + tvec[2] = 1; } - for (j = to_rbf->nrbf; j--; ) /* save repetitive ops. */ - ovec_from_pos(vto[j], to_rbf->rbfa[j].gx, to_rbf->rbfa[j].gy); - - for (i = from_rbf->nrbf; i--; ) { - const double from_ang = R2ANG(from_rbf->rbfa[i].crad); - FVECT vfrom; - ovec_from_pos(vfrom, from_rbf->rbfa[i].gx, from_rbf->rbfa[i].gy); - for (j = to_rbf->nrbf; j--; ) - pmtx[i*to_rbf->nrbf + j] = acos(DOT(vfrom, vto[j])) + - fabs(R2ANG(to_rbf->rbfa[j].crad) - from_ang); + geodesic(tvec, outvec, tvec, rad, GEOD_RAD); + /* average surrounding DSF */ + for (i = 0; i < ninc; i++) { + if (i) spinvector(tvec, tvec, outvec, phinc); + if (tvec[2] > 0 ^ output_orient > 0) + continue; + sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); + ++n; } - free(vto); - return(pmtx); + if (n < 2) /* should never happen! */ + return(sum); + return(sum/(double)n); } -/* Comparison routine needed for sorting price row */ -static const float *price_arr; -static int -msrt_cmp(const void *p1, const void *p2) +/* Estimate single-lobe radius for DSF at the given outgoing angle */ +static double +est_DSFrad(const RBFNODE *rbf, const FVECT outvec) { - float c1 = price_arr[*(const int *)p1]; - float c2 = price_arr[*(const int *)p2]; + const double rad_epsilon = 0.01; + const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * + COSF(outvec[2]); + double inside_rad = rad_epsilon; + double outside_rad = 0.5; + double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); + double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); +#define interp_rad inside_rad + (outside_rad-inside_rad) * \ + (DSFtarget-DSFinside) / (DSFoutside-DSFinside) + /* Newton's method (sort of) */ + do { + double test_rad = interp_rad; + double DSFtest; + if ((test_rad >= outside_rad) | (test_rad <= inside_rad)) + test_rad = .5*(inside_rad + outside_rad); + DSFtest = eval_DSFsurround(rbf, outvec, test_rad); + if (DSFtest > DSFtarget) { + inside_rad = test_rad; + DSFinside = DSFtest; + } else { + outside_rad = test_rad; + DSFoutside = DSFtest; + } + } while (outside_rad-inside_rad > rad_epsilon); - if (c1 > c2) return(1); - if (c1 < c2) return(-1); - return(0); + return(.5*(inside_rad + outside_rad)); +#undef interp_rad } -/* Compute minimum (optimistic) cost for moving the given source material */ -static double -min_cost(double amt2move, const double *avail, const float *price, int n) +static int +dbl_cmp(const void *p1, const void *p2) { - static int *price_sort = NULL; - static int n_alloc = 0; - double total_cost = 0; - int i; + double d1 = *(const double *)p1; + double d2 = *(const double *)p2; - if (amt2move <= FTINY) /* pre-emptive check */ - return(0.); - if (n > n_alloc) { /* (re)allocate sort array */ - if (n_alloc) free(price_sort); - price_sort = (int *)malloc(sizeof(int)*n); - if (price_sort == NULL) { - fprintf(stderr, "%s: Out of memory in min_cost()\n", - progname); - exit(1); - } - n_alloc = n; - } - for (i = n; i--; ) - price_sort[i] = i; - price_arr = price; - qsort(price_sort, n, sizeof(int), &msrt_cmp); - /* move cheapest first */ - for (i = 0; i < n && amt2move > FTINY; i++) { - int d = price_sort[i]; - double amt = (amt2move < avail[d]) ? amt2move : avail[d]; - - total_cost += amt * price[d]; - amt2move -= amt; - } - return(total_cost); + if (d1 > d2) return(1); + if (d1 < d2) return(-1); + return(0); } -/* Take a step in migration by choosing optimal bucket to transfer */ -static double -migration_step(MIGRATION *mig, double *src_rem, double *dst_rem, const float *pmtx) +/* Conservative estimate of average BSDF value from current DSF's */ +static void +comp_bsdf_spec(void) { - const double maxamt = .1; - const double minamt = maxamt*.0001; - static double *src_cost = NULL; - static int n_alloc = 0; - struct { - int s, d; /* source and destination */ - double price; /* price estimate per amount moved */ - double amt; /* amount we can move */ - } cur, best; - int i; - - if (mtx_nrows(mig) > n_alloc) { /* allocate cost array */ - if (n_alloc) - free(src_cost); - src_cost = (double *)malloc(sizeof(double)*mtx_nrows(mig)); - if (src_cost == NULL) { - fprintf(stderr, "%s: Out of memory in migration_step()\n", - progname); - exit(1); - } - n_alloc = mtx_nrows(mig); + double vmod_sum = 0; + double rad_sum = 0; + int n = 0; + double *cost_list = NULL; + double max_cost = 1.; + RBFNODE *rbf; + FVECT sdv; + /* sort by incident altitude */ + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) + n++; + if (n >= 10) + cost_list = (double *)malloc(sizeof(double)*n); + if (cost_list == NULL) { + bsdf_spec_val = 0; + bsdf_spec_rad = 0; + return; } - for (i = mtx_nrows(mig); i--; ) /* starting costs for diff. */ - src_cost[i] = min_cost(src_rem[i], dst_rem, - pmtx+i*mtx_ncols(mig), mtx_ncols(mig)); - - /* find best source & dest. */ - best.s = best.d = -1; best.price = FHUGE; best.amt = 0; - for (cur.s = mtx_nrows(mig); cur.s--; ) { - const float *price = pmtx + cur.s*mtx_ncols(mig); - double cost_others = 0; - if (src_rem[cur.s] < minamt) - continue; - cur.d = -1; /* examine cheapest dest. */ - for (i = mtx_ncols(mig); i--; ) - if (dst_rem[i] > minamt && - (cur.d < 0 || price[i] < price[cur.d])) - cur.d = i; - if (cur.d < 0) - return(.0); - if ((cur.price = price[cur.d]) >= best.price) - continue; /* no point checking further */ - cur.amt = (src_rem[cur.s] < dst_rem[cur.d]) ? - src_rem[cur.s] : dst_rem[cur.d]; - if (cur.amt > maxamt) cur.amt = maxamt; - dst_rem[cur.d] -= cur.amt; /* add up differential costs */ - for (i = mtx_nrows(mig); i--; ) - if (i != cur.s) - cost_others += min_cost(src_rem[i], dst_rem, - price, mtx_ncols(mig)) - - src_cost[i]; - dst_rem[cur.d] += cur.amt; /* undo trial move */ - cur.price += cost_others/cur.amt; /* adjust effective price */ - if (cur.price < best.price) /* are we better than best? */ - best = cur; + n = 0; + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) + cost_list[n++] = rbf->invec[2]*input_orient; + qsort(cost_list, n, sizeof(double), dbl_cmp); + max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */ + free(cost_list); + n = 0; + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { + double this_rad, cosfact, vest; + if (rbf->invec[2]*input_orient > max_cost) + continue; + sdv[0] = -rbf->invec[0]; + sdv[1] = -rbf->invec[1]; + sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); + cosfact = COSF(sdv[2]); + this_rad = est_DSFrad(rbf, sdv); + vest = eval_rbfrep(rbf, sdv) * cosfact * + (2.*M_PI) * this_rad*this_rad; + if (vest > rbf->vtotal) /* don't over-estimate energy */ + vest = rbf->vtotal; + vmod_sum += vest / cosfact; /* remove cosine factor */ + rad_sum += this_rad; + ++n; } - if ((best.s < 0) | (best.d < 0)) - return(.0); - /* make the actual move */ - mig->mtx[mtx_ndx(mig,best.s,best.d)] += best.amt; - src_rem[best.s] -= best.amt; - dst_rem[best.d] -= best.amt; - return(best.amt); + bsdf_spec_rad = rad_sum/(double)n; + bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad); } -#ifdef DEBUG -static char * -thetaphi(const FVECT v) -{ - static char buf[128]; - double theta, phi; - - theta = 180./M_PI*acos(v[2]); - phi = 180./M_PI*atan2(v[1],v[0]); - sprintf(buf, "(%.0f,%.0f)", theta, phi); - - return(buf); -} -#endif - /* Create a new migration holder (sharing memory for multiprocessing) */ static MIGRATION * new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) @@ -192,7 +159,7 @@ new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) size_t memlen = sizeof(MIGRATION) + sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); MIGRATION *newmig; -#ifdef _WIN32 +#if defined(_WIN32) || defined(_WIN64) if (nprocs > 1) fprintf(stderr, "%s: warning - multiprocessing not supported\n", progname); @@ -223,7 +190,7 @@ new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) return(mig_list = newmig); } -#ifdef _WIN32 +#if defined(_WIN32) || defined(_WIN64) #define await_children(n) (void)(n) #define run_subprocess() 0 #define end_subprocess() (void)0 @@ -272,6 +239,7 @@ run_subprocess(void) if (pid < 0) { fprintf(stderr, "%s: cannot fork subprocess\n", progname); + await_children(nchild); exit(1); } ++nchild; /* subprocess started */ @@ -286,73 +254,104 @@ run_subprocess(void) #endif /* ! _WIN32 */ +/* Compute normalized distribution scattering functions for comparison */ +static void +compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1) +{ + const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal; + const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal; + int x, y; + FVECT dv; + + for (x = GRIDRES; x--; ) + for (y = GRIDRES; y--; ) { + ovec_from_pos(dv, x, y); /* cube root (brightness) */ + dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333); + dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333); + } +} + +/* Compute neighborhood distance-squared (dissimilarity) */ +static double +neighborhood_dist2(int x0, int y0, int x1, int y1) +{ + int rad = GRIDRES>>5; + double sum2 = 0.; + double d; + int p[4]; + int i, j; + /* check radius */ + p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1; + for (i = 4; i--; ) { + if (p[i] < rad) rad = p[i]; + if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i]; + } + for (i = -rad; i <= rad; i++) + for (j = -rad; j <= rad; j++) { + d = dsf_grid[x0+i][y0+j].val[0] - + dsf_grid[x1+i][y1+j].val[1]; + sum2 += d*d; + } + return(sum2 / (4*rad*(rad+1) + 1)); +} + +/* Compute distance between two RBF lobes */ +double +lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2) +{ + FVECT vfrom, vto; + double d, res; + /* quadratic cost function */ + ovec_from_pos(vfrom, rbf1->gx, rbf1->gy); + ovec_from_pos(vto, rbf2->gx, rbf2->gy); + d = Acos(DOT(vfrom, vto)); + res = d*d; + d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad); + res += d*d; + /* neighborhood difference */ + res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy, + rbf2->gx, rbf2->gy ); + return(res); +} + + /* Compute and insert migration along directed edge (may fork child) */ static MIGRATION * create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) { - const double end_thresh = 0.1/(from_rbf->nrbf*to_rbf->nrbf); - const double check_thresh = 0.01; - const double rel_thresh = 5e-6; - float *pmtx; MIGRATION *newmig; - double *src_rem, *dst_rem; - double total_rem = 1., move_amt; - int i; + int i, j; /* check if exists already */ for (newmig = from_rbf->ejl; newmig != NULL; newmig = nextedge(from_rbf,newmig)) if (newmig->rbfv[1] == to_rbf) return(NULL); /* else allocate */ +#ifdef DEBUG + fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ", + get_theta180(from_rbf->invec), + get_phi360(from_rbf->invec)); + fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n", + get_theta180(to_rbf->invec), + get_phi360(to_rbf->invec), + from_rbf->nrbf, to_rbf->nrbf); +#endif newmig = new_migration(from_rbf, to_rbf); if (run_subprocess()) return(newmig); /* child continues */ - pmtx = price_routes(from_rbf, to_rbf); - src_rem = (double *)malloc(sizeof(double)*from_rbf->nrbf); - dst_rem = (double *)malloc(sizeof(double)*to_rbf->nrbf); - if ((src_rem == NULL) | (dst_rem == NULL)) { - fprintf(stderr, "%s: Out of memory in create_migration()\n", - progname); - exit(1); - } -#ifdef DEBUG - fprintf(stderr, "Building path from (theta,phi) %s ", - thetaphi(from_rbf->invec)); - fprintf(stderr, "to %s", thetaphi(to_rbf->invec)); - /* if (nchild) */ fputc('\n', stderr); -#endif - /* starting quantities */ - memset(newmig->mtx, 0, sizeof(float)*from_rbf->nrbf*to_rbf->nrbf); - for (i = from_rbf->nrbf; i--; ) - src_rem[i] = rbf_volume(&from_rbf->rbfa[i]) / from_rbf->vtotal; - for (i = to_rbf->nrbf; i--; ) - dst_rem[i] = rbf_volume(&to_rbf->rbfa[i]) / to_rbf->vtotal; - do { /* move a bit at a time */ - move_amt = migration_step(newmig, src_rem, dst_rem, pmtx); - total_rem -= move_amt; -#ifdef DEBUG - if (!nchild) - /* fputc('.', stderr); */ - fprintf(stderr, "%.9f remaining...\r", total_rem); -#endif - } while (total_rem > end_thresh && (total_rem > check_thresh) | - (move_amt > rel_thresh*total_rem)); -#ifdef DEBUG - if (!nchild) fputs("\ndone.\n", stderr); - else fprintf(stderr, "finished with %.9f remaining\n", total_rem); -#endif + + /* compute transport plan */ + compute_nDSFs(from_rbf, to_rbf); + plan_transport(newmig); + for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */ - float nf = rbf_volume(&from_rbf->rbfa[i]); - int j; + double nf = rbf_volume(&from_rbf->rbfa[i]); if (nf <= FTINY) continue; nf = from_rbf->vtotal / nf; for (j = to_rbf->nrbf; j--; ) - newmig->mtx[mtx_ndx(newmig,i,j)] *= nf; + mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */ } end_subprocess(); /* exit here if subprocess */ - free(pmtx); /* free working arrays */ - free(src_rem); - free(dst_rem); return(newmig); } @@ -382,7 +381,7 @@ overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, c return(vother[im_rev] != NULL); } -/* Find context hull vertex to complete triangle (oriented call) */ +/* Find convex hull vertex to complete triangle (oriented call) */ static RBFNODE * find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1) { @@ -403,7 +402,7 @@ find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rb if (DOT(vp, vmid) <= FTINY) continue; /* wrong orientation */ area2 = .25*DOT(vp,vp); - VSUB(vp, rbf->invec, rbf0->invec); + VSUB(vp, rbf->invec, vmid); dprod = -DOT(vp, vejn); VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */ dprod = DOT(vp, vmid) / VLEN(vp); @@ -442,8 +441,10 @@ mesh_from_edge(MIGRATION *edge) ej1 = create_migration(tvert[0], edge->rbfv[1]); mesh_from_edge(ej0); mesh_from_edge(ej1); + return; } - } else if (tvert[1] == NULL) { /* grow mesh on left */ + } + if (tvert[1] == NULL) { /* grow mesh on left */ tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]); if (tvert[1] != NULL) { if (tvert[1]->ord > edge->rbfv[0]->ord) @@ -459,14 +460,93 @@ mesh_from_edge(MIGRATION *edge) } } } + +/* Add normal direction if missing */ +static void +check_normal_incidence(void) +{ + static FVECT norm_vec = {.0, .0, 1.}; + const int saved_nprocs = nprocs; + RBFNODE *near_rbf, *mir_rbf, *rbf; + double bestd; + int n; + + if (dsf_list == NULL) + return; /* XXX should be error? */ + near_rbf = dsf_list; + bestd = input_orient*near_rbf->invec[2]; + if (single_plane_incident) { /* ordered plane incidence? */ + if (bestd >= 1.-2.*FTINY) + return; /* already have normal */ + } else { + switch (inp_coverage) { + case INP_QUAD1: + case INP_QUAD2: + case INP_QUAD3: + case INP_QUAD4: + break; /* quadrilateral symmetry? */ + default: + return; /* else we can interpolate */ + } + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { + const double d = input_orient*rbf->invec[2]; + if (d >= 1.-2.*FTINY) + return; /* seems we have normal */ + if (d > bestd) { + near_rbf = rbf; + bestd = d; + } + } + } + if (mig_list != NULL) { /* need to be called first */ + fprintf(stderr, "%s: Late call to check_normal_incidence()\n", + progname); + exit(1); + } +#ifdef DEBUG + fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n", + get_theta180(near_rbf->invec), get_phi360(near_rbf->invec)); +#endif + /* mirror nearest incidence */ + n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1); + mir_rbf = (RBFNODE *)malloc(n); + if (mir_rbf == NULL) + goto memerr; + memcpy(mir_rbf, near_rbf, n); + mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */ + mir_rbf->next = NULL; + mir_rbf->ejl = NULL; + rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y); + nprocs = 1; /* compute migration matrix */ + if (create_migration(mir_rbf, near_rbf) == NULL) + exit(1); /* XXX should never happen! */ + norm_vec[2] = input_orient; /* interpolate normal dist. */ + rbf = e_advect_rbf(mig_list, norm_vec, 0); + nprocs = saved_nprocs; /* final clean-up */ + free(mir_rbf); + free(mig_list); + mig_list = near_rbf->ejl = NULL; + insert_dsf(rbf); /* insert interpolated normal */ + return; +memerr: + fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n", + progname); + exit(1); +} /* Build our triangle mesh from recorded RBFs */ void build_mesh(void) { + int nrbfs = 0, nmigs = 0; double best2 = M_PI*M_PI; RBFNODE *shrt_edj[2]; RBFNODE *rbf0, *rbf1; + const MIGRATION *ej; + /* average specular peak */ + comp_bsdf_spec(); + /* add normal if needed */ + check_normal_incidence(); /* check if isotropic */ if (single_plane_incident) { for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) @@ -476,7 +556,7 @@ build_mesh(void) return; } shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ - for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) + for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) { for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); if (dist2 < best2) { @@ -484,6 +564,8 @@ build_mesh(void) shrt_edj[1] = rbf1; best2 = dist2; } + } + ++nrbfs; } if (shrt_edj[0] == NULL) { fprintf(stderr, "%s: Cannot find shortest edge\n", progname); @@ -494,6 +576,13 @@ build_mesh(void) mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); else mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); + /* count up edges */ + for (ej = mig_list; ej != NULL; ej = ej->next) + ++nmigs; + if (nmigs < nrbfs-1) /* did meshing fail? */ + fprintf(stderr, + "%s: warning - %d incident directions but only %d interpolant(s)\n", + progname, nrbfs, nmigs); /* complete migrations */ await_children(nchild); }