| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: bsdfmesh.c,v 2.39 2017/10/06 00:23:09 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Create BSDF advection mesh from radial basis functions.
|
| 6 |
*
|
| 7 |
* G. Ward
|
| 8 |
*/
|
| 9 |
|
| 10 |
#if !defined(_WIN32) && !defined(_WIN64)
|
| 11 |
#include <unistd.h>
|
| 12 |
#include <sys/wait.h>
|
| 13 |
#include <sys/mman.h>
|
| 14 |
#endif
|
| 15 |
#define _USE_MATH_DEFINES
|
| 16 |
#include <stdio.h>
|
| 17 |
#include <stdlib.h>
|
| 18 |
#include <string.h>
|
| 19 |
#include <math.h>
|
| 20 |
#include "bsdfrep.h"
|
| 21 |
|
| 22 |
#ifndef NEIGH_FACT2
|
| 23 |
#define NEIGH_FACT2 0.1 /* empirical neighborhood distance weight */
|
| 24 |
#endif
|
| 25 |
/* number of processes to run */
|
| 26 |
int nprocs = 1;
|
| 27 |
/* number of children (-1 in child) */
|
| 28 |
static int nchild = 0;
|
| 29 |
|
| 30 |
/* Compute average DSF value at the given radius from central vector */
|
| 31 |
static double
|
| 32 |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad)
|
| 33 |
{
|
| 34 |
const int ninc = 12;
|
| 35 |
const double phinc = 2.*M_PI/ninc;
|
| 36 |
double sum = 0;
|
| 37 |
int n = 0;
|
| 38 |
FVECT tvec;
|
| 39 |
int i;
|
| 40 |
/* compute initial vector */
|
| 41 |
if (output_orient*outvec[2] >= 1.-FTINY) {
|
| 42 |
tvec[0] = tvec[2] = 0;
|
| 43 |
tvec[1] = 1;
|
| 44 |
} else {
|
| 45 |
tvec[0] = tvec[1] = 0;
|
| 46 |
tvec[2] = 1;
|
| 47 |
}
|
| 48 |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD);
|
| 49 |
/* average surrounding DSF */
|
| 50 |
for (i = 0; i < ninc; i++) {
|
| 51 |
if (i) spinvector(tvec, tvec, outvec, phinc);
|
| 52 |
if (tvec[2] > 0 ^ output_orient > 0)
|
| 53 |
continue;
|
| 54 |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]);
|
| 55 |
++n;
|
| 56 |
}
|
| 57 |
if (n < 2) /* should never happen! */
|
| 58 |
return(sum);
|
| 59 |
return(sum/(double)n);
|
| 60 |
}
|
| 61 |
|
| 62 |
/* Estimate single-lobe radius for DSF at the given outgoing angle */
|
| 63 |
static double
|
| 64 |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec)
|
| 65 |
{
|
| 66 |
const double rad_epsilon = 0.01;
|
| 67 |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) *
|
| 68 |
COSF(outvec[2]);
|
| 69 |
double inside_rad = rad_epsilon;
|
| 70 |
double outside_rad = 0.5;
|
| 71 |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad);
|
| 72 |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad);
|
| 73 |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \
|
| 74 |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside)
|
| 75 |
/* Newton's method (sort of) */
|
| 76 |
do {
|
| 77 |
double test_rad = interp_rad;
|
| 78 |
double DSFtest;
|
| 79 |
if ((test_rad >= outside_rad) | (test_rad <= inside_rad))
|
| 80 |
test_rad = .5*(inside_rad + outside_rad);
|
| 81 |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad);
|
| 82 |
if (DSFtest > DSFtarget) {
|
| 83 |
inside_rad = test_rad;
|
| 84 |
DSFinside = DSFtest;
|
| 85 |
} else {
|
| 86 |
outside_rad = test_rad;
|
| 87 |
DSFoutside = DSFtest;
|
| 88 |
}
|
| 89 |
} while (outside_rad-inside_rad > rad_epsilon);
|
| 90 |
|
| 91 |
return(.5*(inside_rad + outside_rad));
|
| 92 |
#undef interp_rad
|
| 93 |
}
|
| 94 |
|
| 95 |
static int
|
| 96 |
dbl_cmp(const void *p1, const void *p2)
|
| 97 |
{
|
| 98 |
double d1 = *(const double *)p1;
|
| 99 |
double d2 = *(const double *)p2;
|
| 100 |
|
| 101 |
if (d1 > d2) return(1);
|
| 102 |
if (d1 < d2) return(-1);
|
| 103 |
return(0);
|
| 104 |
}
|
| 105 |
|
| 106 |
/* Conservative estimate of average BSDF value from current DSF's */
|
| 107 |
static void
|
| 108 |
comp_bsdf_spec(void)
|
| 109 |
{
|
| 110 |
double vmod_sum = 0;
|
| 111 |
double rad_sum = 0;
|
| 112 |
int n = 0;
|
| 113 |
double *cost_list = NULL;
|
| 114 |
double max_cost = 1.;
|
| 115 |
RBFNODE *rbf;
|
| 116 |
FVECT sdv;
|
| 117 |
/* sort by incident altitude */
|
| 118 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
|
| 119 |
n++;
|
| 120 |
if (n >= 10)
|
| 121 |
cost_list = (double *)malloc(sizeof(double)*n);
|
| 122 |
if (cost_list == NULL) {
|
| 123 |
bsdf_spec_val = 0;
|
| 124 |
bsdf_spec_rad = 0;
|
| 125 |
return;
|
| 126 |
}
|
| 127 |
n = 0;
|
| 128 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next)
|
| 129 |
cost_list[n++] = rbf->invec[2]*input_orient;
|
| 130 |
qsort(cost_list, n, sizeof(double), dbl_cmp);
|
| 131 |
max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */
|
| 132 |
free(cost_list);
|
| 133 |
n = 0;
|
| 134 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
|
| 135 |
double this_rad, cosfact, vest;
|
| 136 |
if (rbf->invec[2]*input_orient > max_cost)
|
| 137 |
continue;
|
| 138 |
sdv[0] = -rbf->invec[0];
|
| 139 |
sdv[1] = -rbf->invec[1];
|
| 140 |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1);
|
| 141 |
cosfact = COSF(sdv[2]);
|
| 142 |
this_rad = est_DSFrad(rbf, sdv);
|
| 143 |
vest = eval_rbfrep(rbf, sdv) * cosfact *
|
| 144 |
(2.*M_PI) * this_rad*this_rad;
|
| 145 |
if (vest > rbf->vtotal) /* don't over-estimate energy */
|
| 146 |
vest = rbf->vtotal;
|
| 147 |
vmod_sum += vest / cosfact; /* remove cosine factor */
|
| 148 |
rad_sum += this_rad;
|
| 149 |
++n;
|
| 150 |
}
|
| 151 |
bsdf_spec_rad = rad_sum/(double)n;
|
| 152 |
bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad);
|
| 153 |
}
|
| 154 |
|
| 155 |
/* Create a new migration holder (sharing memory for multiprocessing) */
|
| 156 |
static MIGRATION *
|
| 157 |
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
|
| 158 |
{
|
| 159 |
size_t memlen = sizeof(MIGRATION) +
|
| 160 |
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1);
|
| 161 |
MIGRATION *newmig;
|
| 162 |
#if defined(_WIN32) || defined(_WIN64)
|
| 163 |
if (nprocs > 1)
|
| 164 |
fprintf(stderr, "%s: warning - multiprocessing not supported\n",
|
| 165 |
progname);
|
| 166 |
nprocs = 1;
|
| 167 |
newmig = (MIGRATION *)malloc(memlen);
|
| 168 |
#else
|
| 169 |
if (nprocs <= 1) { /* single process? */
|
| 170 |
newmig = (MIGRATION *)malloc(memlen);
|
| 171 |
} else { /* else need to share memory */
|
| 172 |
newmig = (MIGRATION *)mmap(NULL, memlen, PROT_READ|PROT_WRITE,
|
| 173 |
MAP_ANON|MAP_SHARED, -1, 0);
|
| 174 |
if ((void *)newmig == MAP_FAILED)
|
| 175 |
newmig = NULL;
|
| 176 |
}
|
| 177 |
#endif
|
| 178 |
if (newmig == NULL) {
|
| 179 |
fprintf(stderr, "%s: cannot allocate new migration\n", progname);
|
| 180 |
exit(1);
|
| 181 |
}
|
| 182 |
newmig->rbfv[0] = from_rbf;
|
| 183 |
newmig->rbfv[1] = to_rbf;
|
| 184 |
/* insert in edge lists */
|
| 185 |
newmig->enxt[0] = from_rbf->ejl;
|
| 186 |
from_rbf->ejl = newmig;
|
| 187 |
newmig->enxt[1] = to_rbf->ejl;
|
| 188 |
to_rbf->ejl = newmig;
|
| 189 |
newmig->next = mig_list; /* push onto global list */
|
| 190 |
return(mig_list = newmig);
|
| 191 |
}
|
| 192 |
|
| 193 |
#if defined(_WIN32) || defined(_WIN64)
|
| 194 |
#define await_children(n) (void)(n)
|
| 195 |
#define run_subprocess() 0
|
| 196 |
#define end_subprocess() (void)0
|
| 197 |
#else
|
| 198 |
|
| 199 |
/* Wait for the specified number of child processes to complete */
|
| 200 |
static void
|
| 201 |
await_children(int n)
|
| 202 |
{
|
| 203 |
int exit_status = 0;
|
| 204 |
|
| 205 |
if (n > nchild)
|
| 206 |
n = nchild;
|
| 207 |
while (n-- > 0) {
|
| 208 |
int status;
|
| 209 |
if (wait(&status) < 0) {
|
| 210 |
fprintf(stderr, "%s: missing child(ren)!\n", progname);
|
| 211 |
nchild = 0;
|
| 212 |
break;
|
| 213 |
}
|
| 214 |
--nchild;
|
| 215 |
if (status) { /* something wrong */
|
| 216 |
if ((status = WEXITSTATUS(status)))
|
| 217 |
exit_status = status;
|
| 218 |
else
|
| 219 |
exit_status += !exit_status;
|
| 220 |
fprintf(stderr, "%s: subprocess died\n", progname);
|
| 221 |
n = nchild; /* wait for the rest */
|
| 222 |
}
|
| 223 |
}
|
| 224 |
if (exit_status)
|
| 225 |
exit(exit_status);
|
| 226 |
}
|
| 227 |
|
| 228 |
/* Start child process if multiprocessing selected */
|
| 229 |
static pid_t
|
| 230 |
run_subprocess(void)
|
| 231 |
{
|
| 232 |
int status;
|
| 233 |
pid_t pid;
|
| 234 |
|
| 235 |
if (nprocs <= 1) /* any children requested? */
|
| 236 |
return(0);
|
| 237 |
await_children(nchild + 1 - nprocs); /* free up child process */
|
| 238 |
if ((pid = fork())) {
|
| 239 |
if (pid < 0) {
|
| 240 |
fprintf(stderr, "%s: cannot fork subprocess\n",
|
| 241 |
progname);
|
| 242 |
await_children(nchild);
|
| 243 |
exit(1);
|
| 244 |
}
|
| 245 |
++nchild; /* subprocess started */
|
| 246 |
return(pid);
|
| 247 |
}
|
| 248 |
nchild = -1;
|
| 249 |
return(0); /* put child to work */
|
| 250 |
}
|
| 251 |
|
| 252 |
/* If we are in subprocess, call exit */
|
| 253 |
#define end_subprocess() if (nchild < 0) _exit(0); else
|
| 254 |
|
| 255 |
#endif /* ! _WIN32 */
|
| 256 |
|
| 257 |
/* Compute normalized distribution scattering functions for comparison */
|
| 258 |
static void
|
| 259 |
compute_nDSFs(const RBFNODE *rbf0, const RBFNODE *rbf1)
|
| 260 |
{
|
| 261 |
const double nf0 = (GRIDRES*GRIDRES) / rbf0->vtotal;
|
| 262 |
const double nf1 = (GRIDRES*GRIDRES) / rbf1->vtotal;
|
| 263 |
int x, y;
|
| 264 |
FVECT dv;
|
| 265 |
|
| 266 |
for (x = GRIDRES; x--; )
|
| 267 |
for (y = GRIDRES; y--; ) {
|
| 268 |
ovec_from_pos(dv, x, y); /* cube root (brightness) */
|
| 269 |
dsf_grid[x][y].val[0] = pow(nf0*eval_rbfrep(rbf0, dv), .3333);
|
| 270 |
dsf_grid[x][y].val[1] = pow(nf1*eval_rbfrep(rbf1, dv), .3333);
|
| 271 |
}
|
| 272 |
}
|
| 273 |
|
| 274 |
/* Compute neighborhood distance-squared (dissimilarity) */
|
| 275 |
static double
|
| 276 |
neighborhood_dist2(int x0, int y0, int x1, int y1)
|
| 277 |
{
|
| 278 |
int rad = GRIDRES>>5;
|
| 279 |
double sum2 = 0.;
|
| 280 |
double d;
|
| 281 |
int p[4];
|
| 282 |
int i, j;
|
| 283 |
/* check radius */
|
| 284 |
p[0] = x0; p[1] = y0; p[2] = x1; p[3] = y1;
|
| 285 |
for (i = 4; i--; ) {
|
| 286 |
if (p[i] < rad) rad = p[i];
|
| 287 |
if (GRIDRES-1-p[i] < rad) rad = GRIDRES-1-p[i];
|
| 288 |
}
|
| 289 |
for (i = -rad; i <= rad; i++)
|
| 290 |
for (j = -rad; j <= rad; j++) {
|
| 291 |
d = dsf_grid[x0+i][y0+j].val[0] -
|
| 292 |
dsf_grid[x1+i][y1+j].val[1];
|
| 293 |
sum2 += d*d;
|
| 294 |
}
|
| 295 |
return(sum2 / (4*rad*(rad+1) + 1));
|
| 296 |
}
|
| 297 |
|
| 298 |
/* Compute distance between two RBF lobes */
|
| 299 |
double
|
| 300 |
lobe_distance(RBFVAL *rbf1, RBFVAL *rbf2)
|
| 301 |
{
|
| 302 |
FVECT vfrom, vto;
|
| 303 |
double d, res;
|
| 304 |
/* quadratic cost function */
|
| 305 |
ovec_from_pos(vfrom, rbf1->gx, rbf1->gy);
|
| 306 |
ovec_from_pos(vto, rbf2->gx, rbf2->gy);
|
| 307 |
d = Acos(DOT(vfrom, vto));
|
| 308 |
res = d*d;
|
| 309 |
d = R2ANG(rbf2->crad) - R2ANG(rbf1->crad);
|
| 310 |
res += d*d;
|
| 311 |
/* neighborhood difference */
|
| 312 |
res += NEIGH_FACT2 * neighborhood_dist2( rbf1->gx, rbf1->gy,
|
| 313 |
rbf2->gx, rbf2->gy );
|
| 314 |
return(res);
|
| 315 |
}
|
| 316 |
|
| 317 |
|
| 318 |
/* Compute and insert migration along directed edge (may fork child) */
|
| 319 |
static MIGRATION *
|
| 320 |
create_migration(RBFNODE *from_rbf, RBFNODE *to_rbf)
|
| 321 |
{
|
| 322 |
MIGRATION *newmig;
|
| 323 |
int i, j;
|
| 324 |
/* check if exists already */
|
| 325 |
for (newmig = from_rbf->ejl; newmig != NULL;
|
| 326 |
newmig = nextedge(from_rbf,newmig))
|
| 327 |
if (newmig->rbfv[1] == to_rbf)
|
| 328 |
return(NULL);
|
| 329 |
/* else allocate */
|
| 330 |
#ifdef DEBUG
|
| 331 |
fprintf(stderr, "Building path from (theta,phi) (%.1f,%.1f) ",
|
| 332 |
get_theta180(from_rbf->invec),
|
| 333 |
get_phi360(from_rbf->invec));
|
| 334 |
fprintf(stderr, "to (%.1f,%.1f) with %d x %d matrix\n",
|
| 335 |
get_theta180(to_rbf->invec),
|
| 336 |
get_phi360(to_rbf->invec),
|
| 337 |
from_rbf->nrbf, to_rbf->nrbf);
|
| 338 |
#endif
|
| 339 |
newmig = new_migration(from_rbf, to_rbf);
|
| 340 |
if (run_subprocess())
|
| 341 |
return(newmig); /* child continues */
|
| 342 |
|
| 343 |
/* compute transport plan */
|
| 344 |
compute_nDSFs(from_rbf, to_rbf);
|
| 345 |
plan_transport(newmig);
|
| 346 |
|
| 347 |
for (i = from_rbf->nrbf; i--; ) { /* normalize final matrix */
|
| 348 |
double nf = rbf_volume(&from_rbf->rbfa[i]);
|
| 349 |
if (nf <= FTINY) continue;
|
| 350 |
nf = from_rbf->vtotal / nf;
|
| 351 |
for (j = to_rbf->nrbf; j--; )
|
| 352 |
mtx_coef(newmig,i,j) *= nf; /* row now sums to 1.0 */
|
| 353 |
}
|
| 354 |
end_subprocess(); /* exit here if subprocess */
|
| 355 |
return(newmig);
|
| 356 |
}
|
| 357 |
|
| 358 |
/* Check if prospective vertex would create overlapping triangle */
|
| 359 |
static int
|
| 360 |
overlaps_tri(const RBFNODE *bv0, const RBFNODE *bv1, const RBFNODE *pv)
|
| 361 |
{
|
| 362 |
const MIGRATION *ej;
|
| 363 |
RBFNODE *vother[2];
|
| 364 |
int im_rev;
|
| 365 |
/* find shared edge in mesh */
|
| 366 |
for (ej = pv->ejl; ej != NULL; ej = nextedge(pv,ej)) {
|
| 367 |
const RBFNODE *tv = opp_rbf(pv,ej);
|
| 368 |
if (tv == bv0) {
|
| 369 |
im_rev = is_rev_tri(ej->rbfv[0]->invec,
|
| 370 |
ej->rbfv[1]->invec, bv1->invec);
|
| 371 |
break;
|
| 372 |
}
|
| 373 |
if (tv == bv1) {
|
| 374 |
im_rev = is_rev_tri(ej->rbfv[0]->invec,
|
| 375 |
ej->rbfv[1]->invec, bv0->invec);
|
| 376 |
break;
|
| 377 |
}
|
| 378 |
}
|
| 379 |
if (!get_triangles(vother, ej)) /* triangle on same side? */
|
| 380 |
return(0);
|
| 381 |
return(vother[im_rev] != NULL);
|
| 382 |
}
|
| 383 |
|
| 384 |
/* Find convex hull vertex to complete triangle (oriented call) */
|
| 385 |
static RBFNODE *
|
| 386 |
find_chull_vert(const RBFNODE *rbf0, const RBFNODE *rbf1)
|
| 387 |
{
|
| 388 |
FVECT vmid, vejn, vp;
|
| 389 |
RBFNODE *rbf, *rbfbest = NULL;
|
| 390 |
double dprod, area2, bestarea2 = FHUGE, bestdprod = -.5;
|
| 391 |
|
| 392 |
VSUB(vejn, rbf1->invec, rbf0->invec);
|
| 393 |
VADD(vmid, rbf0->invec, rbf1->invec);
|
| 394 |
if (normalize(vejn) == 0 || normalize(vmid) == 0)
|
| 395 |
return(NULL);
|
| 396 |
/* XXX exhaustive search */
|
| 397 |
/* Find triangle with minimum rotation from perpendicular */
|
| 398 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
|
| 399 |
if ((rbf == rbf0) | (rbf == rbf1))
|
| 400 |
continue;
|
| 401 |
tri_orient(vp, rbf0->invec, rbf1->invec, rbf->invec);
|
| 402 |
if (DOT(vp, vmid) <= FTINY)
|
| 403 |
continue; /* wrong orientation */
|
| 404 |
area2 = .25*DOT(vp,vp);
|
| 405 |
VSUB(vp, rbf->invec, vmid);
|
| 406 |
dprod = -DOT(vp, vejn);
|
| 407 |
VSUM(vp, vp, vejn, dprod); /* above guarantees non-zero */
|
| 408 |
dprod = DOT(vp, vmid) / VLEN(vp);
|
| 409 |
if (dprod <= bestdprod + FTINY*(1 - 2*(area2 < bestarea2)))
|
| 410 |
continue; /* found better already */
|
| 411 |
if (overlaps_tri(rbf0, rbf1, rbf))
|
| 412 |
continue; /* overlaps another triangle */
|
| 413 |
rbfbest = rbf;
|
| 414 |
bestdprod = dprod; /* new one to beat */
|
| 415 |
bestarea2 = area2;
|
| 416 |
}
|
| 417 |
return(rbfbest);
|
| 418 |
}
|
| 419 |
|
| 420 |
/* Create new migration edge and grow mesh recursively around it */
|
| 421 |
static void
|
| 422 |
mesh_from_edge(MIGRATION *edge)
|
| 423 |
{
|
| 424 |
MIGRATION *ej0, *ej1;
|
| 425 |
RBFNODE *tvert[2];
|
| 426 |
|
| 427 |
if (edge == NULL)
|
| 428 |
return;
|
| 429 |
/* triangle on either side? */
|
| 430 |
get_triangles(tvert, edge);
|
| 431 |
if (tvert[0] == NULL) { /* grow mesh on right */
|
| 432 |
tvert[0] = find_chull_vert(edge->rbfv[0], edge->rbfv[1]);
|
| 433 |
if (tvert[0] != NULL) {
|
| 434 |
if (tvert[0]->ord > edge->rbfv[0]->ord)
|
| 435 |
ej0 = create_migration(edge->rbfv[0], tvert[0]);
|
| 436 |
else
|
| 437 |
ej0 = create_migration(tvert[0], edge->rbfv[0]);
|
| 438 |
if (tvert[0]->ord > edge->rbfv[1]->ord)
|
| 439 |
ej1 = create_migration(edge->rbfv[1], tvert[0]);
|
| 440 |
else
|
| 441 |
ej1 = create_migration(tvert[0], edge->rbfv[1]);
|
| 442 |
mesh_from_edge(ej0);
|
| 443 |
mesh_from_edge(ej1);
|
| 444 |
return;
|
| 445 |
}
|
| 446 |
}
|
| 447 |
if (tvert[1] == NULL) { /* grow mesh on left */
|
| 448 |
tvert[1] = find_chull_vert(edge->rbfv[1], edge->rbfv[0]);
|
| 449 |
if (tvert[1] != NULL) {
|
| 450 |
if (tvert[1]->ord > edge->rbfv[0]->ord)
|
| 451 |
ej0 = create_migration(edge->rbfv[0], tvert[1]);
|
| 452 |
else
|
| 453 |
ej0 = create_migration(tvert[1], edge->rbfv[0]);
|
| 454 |
if (tvert[1]->ord > edge->rbfv[1]->ord)
|
| 455 |
ej1 = create_migration(edge->rbfv[1], tvert[1]);
|
| 456 |
else
|
| 457 |
ej1 = create_migration(tvert[1], edge->rbfv[1]);
|
| 458 |
mesh_from_edge(ej0);
|
| 459 |
mesh_from_edge(ej1);
|
| 460 |
}
|
| 461 |
}
|
| 462 |
}
|
| 463 |
|
| 464 |
/* Add normal direction if missing */
|
| 465 |
static void
|
| 466 |
check_normal_incidence(void)
|
| 467 |
{
|
| 468 |
static FVECT norm_vec = {.0, .0, 1.};
|
| 469 |
const int saved_nprocs = nprocs;
|
| 470 |
RBFNODE *near_rbf, *mir_rbf, *rbf;
|
| 471 |
double bestd;
|
| 472 |
int n;
|
| 473 |
|
| 474 |
if (dsf_list == NULL)
|
| 475 |
return; /* XXX should be error? */
|
| 476 |
near_rbf = dsf_list;
|
| 477 |
bestd = input_orient*near_rbf->invec[2];
|
| 478 |
if (single_plane_incident) { /* ordered plane incidence? */
|
| 479 |
if (bestd >= 1.-2.*FTINY)
|
| 480 |
return; /* already have normal */
|
| 481 |
} else {
|
| 482 |
switch (inp_coverage) {
|
| 483 |
case INP_QUAD1:
|
| 484 |
case INP_QUAD2:
|
| 485 |
case INP_QUAD3:
|
| 486 |
case INP_QUAD4:
|
| 487 |
break; /* quadrilateral symmetry? */
|
| 488 |
default:
|
| 489 |
return; /* else we can interpolate */
|
| 490 |
}
|
| 491 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
|
| 492 |
const double d = input_orient*rbf->invec[2];
|
| 493 |
if (d >= 1.-2.*FTINY)
|
| 494 |
return; /* seems we have normal */
|
| 495 |
if (d > bestd) {
|
| 496 |
near_rbf = rbf;
|
| 497 |
bestd = d;
|
| 498 |
}
|
| 499 |
}
|
| 500 |
}
|
| 501 |
if (mig_list != NULL) { /* need to be called first */
|
| 502 |
fprintf(stderr, "%s: Late call to check_normal_incidence()\n",
|
| 503 |
progname);
|
| 504 |
exit(1);
|
| 505 |
}
|
| 506 |
#ifdef DEBUG
|
| 507 |
fprintf(stderr, "Interpolating normal incidence by mirroring (%.1f,%.1f)\n",
|
| 508 |
get_theta180(near_rbf->invec), get_phi360(near_rbf->invec));
|
| 509 |
#endif
|
| 510 |
/* mirror nearest incidence */
|
| 511 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(near_rbf->nrbf-1);
|
| 512 |
mir_rbf = (RBFNODE *)malloc(n);
|
| 513 |
if (mir_rbf == NULL)
|
| 514 |
goto memerr;
|
| 515 |
memcpy(mir_rbf, near_rbf, n);
|
| 516 |
mir_rbf->ord = near_rbf->ord - 1; /* not used, I think */
|
| 517 |
mir_rbf->next = NULL;
|
| 518 |
mir_rbf->ejl = NULL;
|
| 519 |
rev_rbf_symmetry(mir_rbf, MIRROR_X|MIRROR_Y);
|
| 520 |
nprocs = 1; /* compute migration matrix */
|
| 521 |
if (create_migration(mir_rbf, near_rbf) == NULL)
|
| 522 |
exit(1); /* XXX should never happen! */
|
| 523 |
norm_vec[2] = input_orient; /* interpolate normal dist. */
|
| 524 |
rbf = e_advect_rbf(mig_list, norm_vec, 0);
|
| 525 |
nprocs = saved_nprocs; /* final clean-up */
|
| 526 |
free(mir_rbf);
|
| 527 |
free(mig_list);
|
| 528 |
mig_list = near_rbf->ejl = NULL;
|
| 529 |
insert_dsf(rbf); /* insert interpolated normal */
|
| 530 |
return;
|
| 531 |
memerr:
|
| 532 |
fprintf(stderr, "%s: Out of memory in check_normal_incidence()\n",
|
| 533 |
progname);
|
| 534 |
exit(1);
|
| 535 |
}
|
| 536 |
|
| 537 |
/* Build our triangle mesh from recorded RBFs */
|
| 538 |
void
|
| 539 |
build_mesh(void)
|
| 540 |
{
|
| 541 |
int nrbfs = 0, nmigs = 0;
|
| 542 |
double best2 = M_PI*M_PI;
|
| 543 |
RBFNODE *shrt_edj[2];
|
| 544 |
RBFNODE *rbf0, *rbf1;
|
| 545 |
const MIGRATION *ej;
|
| 546 |
/* average specular peak */
|
| 547 |
comp_bsdf_spec();
|
| 548 |
/* add normal if needed */
|
| 549 |
check_normal_incidence();
|
| 550 |
/* check if isotropic */
|
| 551 |
if (single_plane_incident) {
|
| 552 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next)
|
| 553 |
if (rbf0->next != NULL)
|
| 554 |
create_migration(rbf0, rbf0->next);
|
| 555 |
await_children(nchild);
|
| 556 |
return;
|
| 557 |
}
|
| 558 |
shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */
|
| 559 |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) {
|
| 560 |
for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) {
|
| 561 |
double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec);
|
| 562 |
if (dist2 < best2) {
|
| 563 |
shrt_edj[0] = rbf0;
|
| 564 |
shrt_edj[1] = rbf1;
|
| 565 |
best2 = dist2;
|
| 566 |
}
|
| 567 |
}
|
| 568 |
++nrbfs;
|
| 569 |
}
|
| 570 |
if (shrt_edj[0] == NULL) {
|
| 571 |
fprintf(stderr, "%s: Cannot find shortest edge\n", progname);
|
| 572 |
exit(1);
|
| 573 |
}
|
| 574 |
/* build mesh from this edge */
|
| 575 |
if (shrt_edj[0]->ord < shrt_edj[1]->ord)
|
| 576 |
mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1]));
|
| 577 |
else
|
| 578 |
mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0]));
|
| 579 |
/* count up edges */
|
| 580 |
for (ej = mig_list; ej != NULL; ej = ej->next)
|
| 581 |
++nmigs;
|
| 582 |
if (nmigs < nrbfs-1) /* did meshing fail? */
|
| 583 |
fprintf(stderr,
|
| 584 |
"%s: warning - %d incident directions but only %d interpolant(s)\n",
|
| 585 |
progname, nrbfs, nmigs);
|
| 586 |
/* complete migrations */
|
| 587 |
await_children(nchild);
|
| 588 |
}
|