63 |
|
static double |
64 |
|
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
65 |
|
{ |
66 |
< |
const double rad_epsilon = 0.03; |
66 |
> |
const double rad_epsilon = 0.01; |
67 |
|
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
68 |
|
COSF(outvec[2]); |
69 |
|
double inside_rad = rad_epsilon; |
76 |
|
do { |
77 |
|
double test_rad = interp_rad; |
78 |
|
double DSFtest; |
79 |
< |
if (test_rad >= outside_rad) |
80 |
< |
return(test_rad); |
81 |
< |
if (test_rad <= inside_rad) |
82 |
< |
return(test_rad*(test_rad>0)); |
79 |
> |
if ((test_rad >= outside_rad) | (test_rad <= inside_rad)) |
80 |
> |
test_rad = .5*(inside_rad + outside_rad); |
81 |
|
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
82 |
|
if (DSFtest > DSFtarget) { |
83 |
|
inside_rad = test_rad; |
86 |
|
outside_rad = test_rad; |
87 |
|
DSFoutside = DSFtest; |
88 |
|
} |
91 |
– |
if (DSFoutside >= DSFinside) |
92 |
– |
return(test_rad); |
89 |
|
} while (outside_rad-inside_rad > rad_epsilon); |
90 |
< |
return(interp_rad); |
90 |
> |
|
91 |
> |
return(.5*(inside_rad + outside_rad)); |
92 |
|
#undef interp_rad |
93 |
|
} |
94 |
|
|
488 |
|
default: |
489 |
|
return; /* else we can interpolate */ |
490 |
|
} |
491 |
< |
for (rbf = near_rbf->next; rbf != NULL; rbf = rbf->next) { |
491 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
492 |
|
const double d = input_orient*rbf->invec[2]; |
493 |
|
if (d >= 1.-2.*FTINY) |
494 |
|
return; /* seems we have normal */ |
538 |
|
void |
539 |
|
build_mesh(void) |
540 |
|
{ |
541 |
+ |
int nrbfs = 0, nmigs = 0; |
542 |
|
double best2 = M_PI*M_PI; |
543 |
|
RBFNODE *shrt_edj[2]; |
544 |
|
RBFNODE *rbf0, *rbf1; |
545 |
+ |
const MIGRATION *ej; |
546 |
|
/* average specular peak */ |
547 |
|
comp_bsdf_spec(); |
548 |
|
/* add normal if needed */ |
556 |
|
return; |
557 |
|
} |
558 |
|
shrt_edj[0] = shrt_edj[1] = NULL; /* start w/ shortest edge */ |
559 |
< |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) |
559 |
> |
for (rbf0 = dsf_list; rbf0 != NULL; rbf0 = rbf0->next) { |
560 |
|
for (rbf1 = rbf0->next; rbf1 != NULL; rbf1 = rbf1->next) { |
561 |
|
double dist2 = 2. - 2.*DOT(rbf0->invec,rbf1->invec); |
562 |
|
if (dist2 < best2) { |
564 |
|
shrt_edj[1] = rbf1; |
565 |
|
best2 = dist2; |
566 |
|
} |
567 |
+ |
} |
568 |
+ |
++nrbfs; |
569 |
|
} |
570 |
|
if (shrt_edj[0] == NULL) { |
571 |
|
fprintf(stderr, "%s: Cannot find shortest edge\n", progname); |
576 |
|
mesh_from_edge(create_migration(shrt_edj[0], shrt_edj[1])); |
577 |
|
else |
578 |
|
mesh_from_edge(create_migration(shrt_edj[1], shrt_edj[0])); |
579 |
+ |
/* count up edges */ |
580 |
+ |
for (ej = mig_list; ej != NULL; ej = ej->next) |
581 |
+ |
++nmigs; |
582 |
+ |
if (nmigs < nrbfs-1) /* did meshing fail? */ |
583 |
+ |
fprintf(stderr, |
584 |
+ |
"%s: warning - %d incident directions but only %d interpolant(s)\n", |
585 |
+ |
progname, nrbfs, nmigs); |
586 |
|
/* complete migrations */ |
587 |
|
await_children(nchild); |
588 |
|
} |