| 7 |
|
* G. Ward |
| 8 |
|
*/ |
| 9 |
|
|
| 10 |
< |
#ifndef _WIN32 |
| 10 |
> |
#if !defined(_WIN32) && !defined(_WIN64) |
| 11 |
|
#include <unistd.h> |
| 12 |
|
#include <sys/wait.h> |
| 13 |
|
#include <sys/mman.h> |
| 27 |
|
/* number of children (-1 in child) */ |
| 28 |
|
static int nchild = 0; |
| 29 |
|
|
| 30 |
+ |
/* Compute average DSF value at the given radius from central vector */ |
| 31 |
+ |
static double |
| 32 |
+ |
eval_DSFsurround(const RBFNODE *rbf, const FVECT outvec, const double rad) |
| 33 |
+ |
{ |
| 34 |
+ |
const int ninc = 12; |
| 35 |
+ |
const double phinc = 2.*M_PI/ninc; |
| 36 |
+ |
double sum = 0; |
| 37 |
+ |
int n = 0; |
| 38 |
+ |
FVECT tvec; |
| 39 |
+ |
int i; |
| 40 |
+ |
/* compute initial vector */ |
| 41 |
+ |
if (output_orient*outvec[2] >= 1.-FTINY) { |
| 42 |
+ |
tvec[0] = tvec[2] = 0; |
| 43 |
+ |
tvec[1] = 1; |
| 44 |
+ |
} else { |
| 45 |
+ |
tvec[0] = tvec[1] = 0; |
| 46 |
+ |
tvec[2] = 1; |
| 47 |
+ |
} |
| 48 |
+ |
geodesic(tvec, outvec, tvec, rad, GEOD_RAD); |
| 49 |
+ |
/* average surrounding DSF */ |
| 50 |
+ |
for (i = 0; i < ninc; i++) { |
| 51 |
+ |
if (i) spinvector(tvec, tvec, outvec, phinc); |
| 52 |
+ |
if (tvec[2] > 0 ^ output_orient > 0) |
| 53 |
+ |
continue; |
| 54 |
+ |
sum += eval_rbfrep(rbf, tvec) * COSF(tvec[2]); |
| 55 |
+ |
++n; |
| 56 |
+ |
} |
| 57 |
+ |
if (n < 2) /* should never happen! */ |
| 58 |
+ |
return(sum); |
| 59 |
+ |
return(sum/(double)n); |
| 60 |
+ |
} |
| 61 |
+ |
|
| 62 |
+ |
/* Estimate single-lobe radius for DSF at the given outgoing angle */ |
| 63 |
+ |
static double |
| 64 |
+ |
est_DSFrad(const RBFNODE *rbf, const FVECT outvec) |
| 65 |
+ |
{ |
| 66 |
+ |
const double rad_epsilon = 0.03; |
| 67 |
+ |
const double DSFtarget = 0.60653066 * eval_rbfrep(rbf,outvec) * |
| 68 |
+ |
COSF(outvec[2]); |
| 69 |
+ |
double inside_rad = rad_epsilon; |
| 70 |
+ |
double outside_rad = 0.5; |
| 71 |
+ |
double DSFinside = eval_DSFsurround(rbf, outvec, inside_rad); |
| 72 |
+ |
double DSFoutside = eval_DSFsurround(rbf, outvec, outside_rad); |
| 73 |
+ |
#define interp_rad inside_rad + (outside_rad-inside_rad) * \ |
| 74 |
+ |
(DSFtarget-DSFinside) / (DSFoutside-DSFinside) |
| 75 |
+ |
/* Newton's method (sort of) */ |
| 76 |
+ |
do { |
| 77 |
+ |
double test_rad = interp_rad; |
| 78 |
+ |
double DSFtest; |
| 79 |
+ |
if (test_rad >= outside_rad) |
| 80 |
+ |
return(test_rad); |
| 81 |
+ |
if (test_rad <= inside_rad) |
| 82 |
+ |
return(test_rad*(test_rad>0)); |
| 83 |
+ |
DSFtest = eval_DSFsurround(rbf, outvec, test_rad); |
| 84 |
+ |
if (DSFtest > DSFtarget) { |
| 85 |
+ |
inside_rad = test_rad; |
| 86 |
+ |
DSFinside = DSFtest; |
| 87 |
+ |
} else { |
| 88 |
+ |
outside_rad = test_rad; |
| 89 |
+ |
DSFoutside = DSFtest; |
| 90 |
+ |
} |
| 91 |
+ |
if (DSFoutside >= DSFinside) |
| 92 |
+ |
return(test_rad); |
| 93 |
+ |
} while (outside_rad-inside_rad > rad_epsilon); |
| 94 |
+ |
return(interp_rad); |
| 95 |
+ |
#undef interp_rad |
| 96 |
+ |
} |
| 97 |
+ |
|
| 98 |
+ |
static int |
| 99 |
+ |
dbl_cmp(const void *p1, const void *p2) |
| 100 |
+ |
{ |
| 101 |
+ |
double d1 = *(const double *)p1; |
| 102 |
+ |
double d2 = *(const double *)p2; |
| 103 |
+ |
|
| 104 |
+ |
if (d1 > d2) return(1); |
| 105 |
+ |
if (d1 < d2) return(-1); |
| 106 |
+ |
return(0); |
| 107 |
+ |
} |
| 108 |
+ |
|
| 109 |
+ |
/* Conservative estimate of average BSDF value from current DSF's */ |
| 110 |
+ |
static void |
| 111 |
+ |
comp_bsdf_spec(void) |
| 112 |
+ |
{ |
| 113 |
+ |
double vmod_sum = 0; |
| 114 |
+ |
double rad_sum = 0; |
| 115 |
+ |
int n = 0; |
| 116 |
+ |
double *cost_list = NULL; |
| 117 |
+ |
double max_cost = 1.; |
| 118 |
+ |
RBFNODE *rbf; |
| 119 |
+ |
FVECT sdv; |
| 120 |
+ |
/* sort by incident altitude */ |
| 121 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 122 |
+ |
n++; |
| 123 |
+ |
if (n >= 10) |
| 124 |
+ |
cost_list = (double *)malloc(sizeof(double)*n); |
| 125 |
+ |
if (cost_list == NULL) { |
| 126 |
+ |
bsdf_spec_val = 0; |
| 127 |
+ |
bsdf_spec_rad = 0; |
| 128 |
+ |
return; |
| 129 |
+ |
} |
| 130 |
+ |
n = 0; |
| 131 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) |
| 132 |
+ |
cost_list[n++] = rbf->invec[2]*input_orient; |
| 133 |
+ |
qsort(cost_list, n, sizeof(double), dbl_cmp); |
| 134 |
+ |
max_cost = cost_list[(n+3)/4]; /* accept 25% nearest grazing */ |
| 135 |
+ |
free(cost_list); |
| 136 |
+ |
n = 0; |
| 137 |
+ |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 138 |
+ |
double this_rad, cosfact, vest; |
| 139 |
+ |
if (rbf->invec[2]*input_orient > max_cost) |
| 140 |
+ |
continue; |
| 141 |
+ |
sdv[0] = -rbf->invec[0]; |
| 142 |
+ |
sdv[1] = -rbf->invec[1]; |
| 143 |
+ |
sdv[2] = rbf->invec[2]*(2*(input_orient==output_orient) - 1); |
| 144 |
+ |
cosfact = COSF(sdv[2]); |
| 145 |
+ |
this_rad = est_DSFrad(rbf, sdv); |
| 146 |
+ |
vest = eval_rbfrep(rbf, sdv) * cosfact * |
| 147 |
+ |
(2.*M_PI) * this_rad*this_rad; |
| 148 |
+ |
if (vest > rbf->vtotal) /* don't over-estimate energy */ |
| 149 |
+ |
vest = rbf->vtotal; |
| 150 |
+ |
vmod_sum += vest / cosfact; /* remove cosine factor */ |
| 151 |
+ |
rad_sum += this_rad; |
| 152 |
+ |
++n; |
| 153 |
+ |
} |
| 154 |
+ |
bsdf_spec_rad = rad_sum/(double)n; |
| 155 |
+ |
bsdf_spec_val = vmod_sum/(2.*M_PI*n*bsdf_spec_rad*bsdf_spec_rad); |
| 156 |
+ |
} |
| 157 |
+ |
|
| 158 |
|
/* Create a new migration holder (sharing memory for multiprocessing) */ |
| 159 |
|
static MIGRATION * |
| 160 |
|
new_migration(RBFNODE *from_rbf, RBFNODE *to_rbf) |
| 162 |
|
size_t memlen = sizeof(MIGRATION) + |
| 163 |
|
sizeof(float)*(from_rbf->nrbf*to_rbf->nrbf - 1); |
| 164 |
|
MIGRATION *newmig; |
| 165 |
< |
#ifdef _WIN32 |
| 165 |
> |
#if defined(_WIN32) || defined(_WIN64) |
| 166 |
|
if (nprocs > 1) |
| 167 |
|
fprintf(stderr, "%s: warning - multiprocessing not supported\n", |
| 168 |
|
progname); |
| 193 |
|
return(mig_list = newmig); |
| 194 |
|
} |
| 195 |
|
|
| 196 |
< |
#ifdef _WIN32 |
| 196 |
> |
#if defined(_WIN32) || defined(_WIN64) |
| 197 |
|
#define await_children(n) (void)(n) |
| 198 |
|
#define run_subprocess() 0 |
| 199 |
|
#define end_subprocess() (void)0 |
| 524 |
|
if (create_migration(mir_rbf, near_rbf) == NULL) |
| 525 |
|
exit(1); /* XXX should never happen! */ |
| 526 |
|
norm_vec[2] = input_orient; /* interpolate normal dist. */ |
| 527 |
< |
rbf = e_advect_rbf(mig_list, norm_vec, 2*near_rbf->nrbf); |
| 527 |
> |
rbf = e_advect_rbf(mig_list, norm_vec, 0); |
| 528 |
|
nprocs = saved_nprocs; /* final clean-up */ |
| 529 |
|
free(mir_rbf); |
| 530 |
|
free(mig_list); |
| 544 |
|
double best2 = M_PI*M_PI; |
| 545 |
|
RBFNODE *shrt_edj[2]; |
| 546 |
|
RBFNODE *rbf0, *rbf1; |
| 547 |
+ |
/* average specular peak */ |
| 548 |
+ |
comp_bsdf_spec(); |
| 549 |
|
/* add normal if needed */ |
| 550 |
|
check_normal_incidence(); |
| 551 |
|
/* check if isotropic */ |