ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfinterp.c
Revision: 2.22
Committed: Wed Sep 8 01:05:57 2021 UTC (2 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.21: +2 -3 lines
Log Message:
fix(bsdf2ttree, bsdf2klems): tightened threshold for on-edge detection

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdfinterp.c,v 2.21 2016/01/29 16:21:55 greg Exp $";
3 #endif
4 /*
5 * Interpolate BSDF data from radial basis functions in advection mesh.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include "bsdfrep.h"
16
17 /* Insert vertex in ordered list */
18 static void
19 insert_vert(RBFNODE **vlist, RBFNODE *v)
20 {
21 int i, j;
22
23 for (i = 0; vlist[i] != NULL; i++) {
24 if (v == vlist[i])
25 return;
26 if (v->ord < vlist[i]->ord)
27 break;
28 }
29 for (j = i; vlist[j] != NULL; j++)
30 ;
31 while (j > i) {
32 vlist[j] = vlist[j-1];
33 --j;
34 }
35 vlist[i] = v;
36 }
37
38 /* Sort triangle edges in standard order */
39 static int
40 order_triangle(MIGRATION *miga[3])
41 {
42 RBFNODE *vert[7];
43 MIGRATION *ord[3];
44 int i;
45 /* order vertices, first */
46 memset(vert, 0, sizeof(vert));
47 for (i = 3; i--; ) {
48 if (miga[i] == NULL)
49 return(0);
50 insert_vert(vert, miga[i]->rbfv[0]);
51 insert_vert(vert, miga[i]->rbfv[1]);
52 }
53 /* should be just 3 vertices */
54 if ((vert[2] == NULL) | (vert[3] != NULL))
55 return(0);
56 /* identify edge 0 */
57 for (i = 3; i--; )
58 if (miga[i]->rbfv[0] == vert[0] &&
59 miga[i]->rbfv[1] == vert[1]) {
60 ord[0] = miga[i];
61 break;
62 }
63 if (i < 0)
64 return(0);
65 /* identify edge 1 */
66 for (i = 3; i--; )
67 if (miga[i]->rbfv[0] == vert[1] &&
68 miga[i]->rbfv[1] == vert[2]) {
69 ord[1] = miga[i];
70 break;
71 }
72 if (i < 0)
73 return(0);
74 /* identify edge 2 */
75 for (i = 3; i--; )
76 if (miga[i]->rbfv[0] == vert[0] &&
77 miga[i]->rbfv[1] == vert[2]) {
78 ord[2] = miga[i];
79 break;
80 }
81 if (i < 0)
82 return(0);
83 /* reassign order */
84 miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
85 return(1);
86 }
87
88 /* Determine if we are close enough to an edge */
89 static int
90 on_edge(const MIGRATION *ej, const FVECT ivec)
91 {
92 double cos_a, cos_b, cos_c, cos_aplusb;
93 /* use triangle inequality */
94 cos_a = DOT(ej->rbfv[0]->invec, ivec);
95 if (cos_a <= 0)
96 return(0);
97 if (cos_a >= 1.) /* handles rounding error */
98 return(1);
99
100 cos_b = DOT(ej->rbfv[1]->invec, ivec);
101 if (cos_b <= 0)
102 return(0);
103 if (cos_b >= 1.)
104 return(1);
105
106 cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b));
107 if (cos_aplusb <= 0)
108 return(0);
109
110 cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec);
111 return(cos_c - cos_aplusb < .0002);
112 }
113
114 /* Determine if we are inside the given triangle */
115 static int
116 in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p)
117 {
118 FVECT vc;
119 int sgn1, sgn2, sgn3;
120 /* signed volume test */
121 VCROSS(vc, v1->invec, v2->invec);
122 sgn1 = (DOT(p, vc) > 0);
123 VCROSS(vc, v2->invec, v3->invec);
124 sgn2 = (DOT(p, vc) > 0);
125 if (sgn1 != sgn2)
126 return(0);
127 VCROSS(vc, v3->invec, v1->invec);
128 sgn3 = (DOT(p, vc) > 0);
129 return(sgn2 == sgn3);
130 }
131
132 /* Test (and set) bitmap for edge */
133 static int
134 check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark)
135 {
136 int ejndx, bit2check;
137
138 if (mig->rbfv[0]->ord > mig->rbfv[1]->ord)
139 ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord;
140 else
141 ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord;
142
143 bit2check = 1<<(ejndx&07);
144
145 if (emap[ejndx>>3] & bit2check)
146 return(0);
147 if (mark)
148 emap[ejndx>>3] |= bit2check;
149 return(1);
150 }
151
152 /* Compute intersection with the given position over remaining mesh */
153 static int
154 in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges,
155 const FVECT ivec, MIGRATION *mig)
156 {
157 RBFNODE *tv[2];
158 MIGRATION *sej[2], *dej[2];
159 int i;
160 /* check visitation record */
161 if (!check_edge(emap, nedges, mig, 1))
162 return(0);
163 if (on_edge(mig, ivec)) {
164 miga[0] = mig; /* close enough to edge */
165 return(1);
166 }
167 if (!get_triangles(tv, mig)) /* do triangles either side? */
168 return(0);
169 for (i = 2; i--; ) { /* identify edges to check */
170 MIGRATION *ej;
171 sej[i] = dej[i] = NULL;
172 if (tv[i] == NULL)
173 continue;
174 for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) {
175 RBFNODE *rbfop = opp_rbf(tv[i],ej);
176 if (rbfop == mig->rbfv[0]) {
177 if (check_edge(emap, nedges, ej, 0))
178 sej[i] = ej;
179 } else if (rbfop == mig->rbfv[1]) {
180 if (check_edge(emap, nedges, ej, 0))
181 dej[i] = ej;
182 }
183 }
184 }
185 for (i = 2; i--; ) { /* check triangles just once */
186 if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i]))
187 return(1);
188 if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i]))
189 return(1);
190 if ((sej[i] == NULL) | (dej[i] == NULL))
191 continue;
192 if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) {
193 miga[0] = mig;
194 miga[1] = sej[i];
195 miga[2] = dej[i];
196 return(1);
197 }
198 }
199 return(0); /* not near this edge */
200 }
201
202 /* Find edge(s) for interpolating the given vector, applying symmetry */
203 int
204 get_interp(MIGRATION *miga[3], FVECT invec)
205 {
206 miga[0] = miga[1] = miga[2] = NULL;
207 if (single_plane_incident) { /* isotropic BSDF? */
208 RBFNODE *rbf; /* find edge we're on */
209 for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
210 if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY)
211 break;
212 if (rbf->next != NULL && input_orient*rbf->next->invec[2] <
213 input_orient*invec[2]+FTINY) {
214 for (miga[0] = rbf->ejl; miga[0] != NULL;
215 miga[0] = nextedge(rbf,miga[0]))
216 if (opp_rbf(rbf,miga[0]) == rbf->next) {
217 double nf = 1. -
218 rbf->next->invec[2]*rbf->next->invec[2];
219 if (nf > FTINY) { /* rotate to match */
220 nf = sqrt((1.-invec[2]*invec[2])/nf);
221 invec[0] = nf*rbf->next->invec[0];
222 invec[1] = nf*rbf->next->invec[1];
223 }
224 return(0); /* rotational symmetry */
225 }
226 break;
227 }
228 }
229 return(-1); /* outside range! */
230 }
231 { /* else use triangle mesh */
232 int sym = use_symmetry(invec);
233 int nedges = 0;
234 MIGRATION *mep;
235 unsigned char *emap;
236 /* clear visitation map */
237 for (mep = mig_list; mep != NULL; mep = mep->next)
238 ++nedges;
239 emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1);
240 if (emap == NULL) {
241 fprintf(stderr, "%s: Out of memory in get_interp()\n",
242 progname);
243 exit(1);
244 }
245 /* identify intersection */
246 if (!in_mesh(miga, emap, nedges, invec, mig_list)) {
247 #ifdef DEBUG
248 fprintf(stderr,
249 "Incident angle (%.1f,%.1f) deg. outside mesh\n",
250 get_theta180(invec), get_phi360(invec));
251 #endif
252 sym = -1; /* outside mesh */
253 } else if (miga[1] != NULL &&
254 (miga[2] == NULL || !order_triangle(miga))) {
255 #ifdef DEBUG
256 fputs("Munged triangle in get_interp()\n", stderr);
257 #endif
258 sym = -1;
259 }
260 free(emap);
261 return(sym); /* return in standard order */
262 }
263 }
264
265 /* Advect between recorded incident angles and allocate new RBF */
266 RBFNODE *
267 advect_rbf(const FVECT invec, int lobe_lim)
268 {
269 double cthresh = FTINY;
270 FVECT sivec;
271 MIGRATION *miga[3];
272 RBFNODE *rbf;
273 int sym;
274 float mbfact, mcfact;
275 int n, i, j, k;
276 FVECT v0, v1, v2;
277 double s, t;
278
279 VCOPY(sivec, invec); /* find triangle/edge */
280 sym = get_interp(miga, sivec);
281 if (sym < 0) /* can't interpolate? */
282 return(def_rbf_spec(invec));
283 if (miga[1] == NULL) { /* advect along edge? */
284 rbf = e_advect_rbf(miga[0], sivec, lobe_lim);
285 if (single_plane_incident)
286 rotate_rbf(rbf, invec);
287 else
288 rev_rbf_symmetry(rbf, sym);
289 return(rbf);
290 }
291 #ifdef DEBUG
292 if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) |
293 (miga[0]->rbfv[1] != miga[1]->rbfv[0]) |
294 (miga[1]->rbfv[1] != miga[2]->rbfv[1])) {
295 fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname);
296 exit(1);
297 }
298 #endif
299 /* figure out position */
300 fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
301 normalize(v0);
302 fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
303 normalize(v2);
304 fcross(v1, sivec, miga[1]->rbfv[1]->invec);
305 normalize(v1);
306 s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
307 geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
308 s, GEOD_REL);
309 t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
310 tryagain:
311 n = 0; /* count migrating particles */
312 for (i = 0; i < mtx_nrows(miga[0]); i++)
313 for (j = 0; j < mtx_ncols(miga[0]); j++)
314 for (k = (mtx_coef(miga[0],i,j) > cthresh) *
315 mtx_ncols(miga[2]); k--; )
316 n += (mtx_coef(miga[2],i,k) > cthresh ||
317 mtx_coef(miga[1],j,k) > cthresh);
318 /* are we over our limit? */
319 if ((lobe_lim > 0) & (n > lobe_lim)) {
320 cthresh = cthresh*2. + 10.*FTINY;
321 goto tryagain;
322 }
323 #ifdef DEBUG
324 fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
325 miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
326 miga[2]->rbfv[1]->nrbf, n);
327 #endif
328 rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
329 if (rbf == NULL) {
330 fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname);
331 exit(1);
332 }
333 rbf->next = NULL; rbf->ejl = NULL;
334 VCOPY(rbf->invec, sivec);
335 rbf->nrbf = n;
336 n = 0; /* compute RBF lobes */
337 mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
338 (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
339 mcfact = (1.-s) *
340 (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
341 for (i = 0; i < mtx_nrows(miga[0]); i++) {
342 const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
343 const float w0i = rbf0i->peak;
344 const double rad0i = R2ANG(rbf0i->crad);
345 C_COLOR cc0;
346 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
347 c_decodeChroma(&cc0, rbf0i->chroma);
348 for (j = 0; j < mtx_ncols(miga[0]); j++) {
349 const float ma = mtx_coef(miga[0],i,j);
350 const RBFVAL *rbf1j;
351 C_COLOR ccs;
352 double srad2;
353 if (ma <= cthresh)
354 continue;
355 rbf1j = &miga[0]->rbfv[1]->rbfa[j];
356 c_decodeChroma(&ccs, rbf1j->chroma);
357 c_cmix(&ccs, 1.-s, &cc0, s, &ccs);
358 srad2 = R2ANG(rbf1j->crad);
359 srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2;
360 ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
361 geodesic(v1, v0, v1, s, GEOD_REL);
362 for (k = 0; k < mtx_ncols(miga[2]); k++) {
363 float mb = mtx_coef(miga[1],j,k);
364 float mc = mtx_coef(miga[2],i,k);
365 const RBFVAL *rbf2k;
366 double rad2;
367 int pos[2];
368 if ((mb <= cthresh) & (mc <= cthresh))
369 continue;
370 rbf2k = &miga[2]->rbfv[1]->rbfa[k];
371 rad2 = R2ANG(rbf2k->crad);
372 rad2 = srad2 + t*rad2*rad2;
373 rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) *
374 rad0i*rad0i/rad2;
375 if (rbf_colorimetry == RBCtristimulus) {
376 C_COLOR cres;
377 c_decodeChroma(&cres, rbf2k->chroma);
378 c_cmix(&cres, 1.-t, &ccs, t, &cres);
379 rbf->rbfa[n].chroma = c_encodeChroma(&cres);
380 } else
381 rbf->rbfa[n].chroma = c_dfchroma;
382 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
383 ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
384 geodesic(v2, v1, v2, t, GEOD_REL);
385 pos_from_vec(pos, v2);
386 rbf->rbfa[n].gx = pos[0];
387 rbf->rbfa[n].gy = pos[1];
388 ++n;
389 }
390 }
391 }
392 rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
393 rev_rbf_symmetry(rbf, sym);
394 return(rbf);
395 }