#ifndef lint static const char RCSid[] = "$Id: bsdfinterp.c,v 2.2 2012/10/20 07:02:00 greg Exp $"; #endif /* * Interpolate BSDF data from radial basis functions in advection mesh. * * G. Ward */ #define _USE_MATH_DEFINES #include #include #include #include #include "bsdfrep.h" /* migration edges drawn in raster fashion */ MIGRATION *mig_grid[GRIDRES][GRIDRES]; #ifdef DEBUG #include "random.h" #include "bmpfile.h" /* Hash pointer to byte value (must return 0 for NULL) */ static int byte_hash(const void *p) { size_t h = (size_t)p; h ^= (size_t)p >> 8; h ^= (size_t)p >> 16; h ^= (size_t)p >> 24; return(h & 0xff); } /* Write out BMP image showing edges */ static void write_edge_image(const char *fname) { BMPHeader *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256); BMPWriter *wtr; int i, j; fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname); hdr->compr = BI_RLE8; for (i = 256; --i; ) { /* assign random color map */ hdr->palette[i].r = random() & 0xff; hdr->palette[i].g = random() & 0xff; hdr->palette[i].b = random() & 0xff; /* reject dark colors */ i += (hdr->palette[i].r + hdr->palette[i].g + hdr->palette[i].b < 128); } hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0; /* open output */ wtr = BMPopenOutputFile(fname, hdr); if (wtr == NULL) { free(hdr); return; } for (i = 0; i < GRIDRES; i++) { /* write scanlines */ for (j = 0; j < GRIDRES; j++) wtr->scanline[j] = byte_hash(mig_grid[i][j]); if (BMPwriteScanline(wtr) != BIR_OK) break; } BMPcloseOutput(wtr); /* close & clean up */ } #endif /* Draw edge list into mig_grid array */ void draw_edges(void) { int nnull = 0, ntot = 0; MIGRATION *ej; int p0[2], p1[2]; memset(mig_grid, 0, sizeof(mig_grid)); for (ej = mig_list; ej != NULL; ej = ej->next) { ++ntot; pos_from_vec(p0, ej->rbfv[0]->invec); pos_from_vec(p1, ej->rbfv[1]->invec); if ((p0[0] == p1[0]) & (p0[1] == p1[1])) { ++nnull; mig_grid[p0[0]][p0[1]] = ej; continue; } if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) { const int xstep = 2*(p1[0] > p0[0]) - 1; const double ystep = (double)((p1[1]-p0[1])*xstep) / (double)(p1[0]-p0[0]); int x; double y; for (x = p0[0], y = p0[1]+.5; x != p1[0]; x += xstep, y += ystep) mig_grid[x][(int)y] = ej; mig_grid[x][(int)y] = ej; } else { const int ystep = 2*(p1[1] > p0[1]) - 1; const double xstep = (double)((p1[0]-p0[0])*ystep) / (double)(p1[1]-p0[1]); int y; double x; for (y = p0[1], x = p0[0]+.5; y != p1[1]; y += ystep, x += xstep) mig_grid[(int)x][y] = ej; mig_grid[(int)x][y] = ej; } } if (nnull) fprintf(stderr, "Warning: %d of %d edges are null\n", nnull, ntot); #ifdef DEBUG write_edge_image("bsdf_edges.bmp"); #endif } /* Identify enclosing triangle for this position (flood fill raster check) */ static int identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8], int px, int py) { const int btest = 1<<(py&07); if (vmap[px][py>>3] & btest) /* already visited here? */ return(1); /* else mark it */ vmap[px][py>>3] |= btest; if (mig_grid[px][py] != NULL) { /* are we on an edge? */ int i; for (i = 0; i < 3; i++) { if (miga[i] == mig_grid[px][py]) return(1); if (miga[i] != NULL) continue; miga[i] = mig_grid[px][py]; return(1); } return(0); /* outside triangle! */ } /* check neighbors (flood) */ if (px > 0 && !identify_tri(miga, vmap, px-1, py)) return(0); if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py)) return(0); if (py > 0 && !identify_tri(miga, vmap, px, py-1)) return(0); if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1)) return(0); return(1); /* this neighborhood done */ } /* Insert vertex in ordered list */ static void insert_vert(RBFNODE **vlist, RBFNODE *v) { int i, j; for (i = 0; vlist[i] != NULL; i++) { if (v == vlist[i]) return; if (v->ord < vlist[i]->ord) break; } for (j = i; vlist[j] != NULL; j++) ; while (j > i) { vlist[j] = vlist[j-1]; --j; } vlist[i] = v; } /* Sort triangle edges in standard order */ static int order_triangle(MIGRATION *miga[3]) { RBFNODE *vert[7]; MIGRATION *ord[3]; int i; /* order vertices, first */ memset(vert, 0, sizeof(vert)); for (i = 3; i--; ) { if (miga[i] == NULL) return(0); insert_vert(vert, miga[i]->rbfv[0]); insert_vert(vert, miga[i]->rbfv[1]); } /* should be just 3 vertices */ if ((vert[3] == NULL) | (vert[4] != NULL)) return(0); /* identify edge 0 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[0] && miga[i]->rbfv[1] == vert[1]) { ord[0] = miga[i]; break; } if (i < 0) return(0); /* identify edge 1 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[1] && miga[i]->rbfv[1] == vert[2]) { ord[1] = miga[i]; break; } if (i < 0) return(0); /* identify edge 2 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[0] && miga[i]->rbfv[1] == vert[2]) { ord[2] = miga[i]; break; } if (i < 0) return(0); /* reassign order */ miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2]; return(1); } /* Find edge(s) for interpolating the given vector, applying symmetry */ int get_interp(MIGRATION *miga[3], FVECT invec) { miga[0] = miga[1] = miga[2] = NULL; if (single_plane_incident) { /* isotropic BSDF? */ RBFNODE *rbf; /* find edge we're on */ for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { if (input_orient*rbf->invec[2] < input_orient*invec[2]) break; if (rbf->next != NULL && input_orient*rbf->next->invec[2] < input_orient*invec[2]) { for (miga[0] = rbf->ejl; miga[0] != NULL; miga[0] = nextedge(rbf,miga[0])) if (opp_rbf(rbf,miga[0]) == rbf->next) return(0); break; } } return(-1); /* outside range! */ } { /* else use triangle mesh */ const int sym = use_symmetry(invec); unsigned char floodmap[GRIDRES][(GRIDRES+7)/8]; int pstart[2]; RBFNODE *vother; MIGRATION *ej; int i; pos_from_vec(pstart, invec); memset(floodmap, 0, sizeof(floodmap)); /* call flooding function */ if (!identify_tri(miga, floodmap, pstart[0], pstart[1])) return(-1); /* outside mesh */ if ((miga[0] == NULL) | (miga[2] == NULL)) return(-1); /* should never happen */ if (miga[1] == NULL) return(sym); /* on edge */ /* verify triangle */ if (!order_triangle(miga)) { #ifdef DEBUG fputs("Munged triangle in get_interp()\n", stderr); #endif vother = NULL; /* find triangle from edge */ for (i = 3; i--; ) { RBFNODE *tpair[2]; if (get_triangles(tpair, miga[i]) && (vother = tpair[ is_rev_tri( miga[i]->rbfv[0]->invec, miga[i]->rbfv[1]->invec, invec) ]) != NULL) break; } if (vother == NULL) { /* couldn't find 3rd vertex */ #ifdef DEBUG fputs("No triangle in get_interp()\n", stderr); #endif return(-1); } /* reassign other two edges */ for (ej = vother->ejl; ej != NULL; ej = nextedge(vother,ej)) { RBFNODE *vorig = opp_rbf(vother,ej); if (vorig == miga[i]->rbfv[0]) miga[(i+1)%3] = ej; else if (vorig == miga[i]->rbfv[1]) miga[(i+2)%3] = ej; } if (!order_triangle(miga)) { #ifdef DEBUG fputs("Bad triangle in get_interp()\n", stderr); #endif return(-1); } } return(sym); /* return in standard order */ } } /* Advect and allocate new RBF along edge */ static RBFNODE * e_advect_rbf(const MIGRATION *mig, const FVECT invec) { RBFNODE *rbf; int n, i, j; double t, full_dist; /* get relative position */ t = acos(DOT(invec, mig->rbfv[0]->invec)); if (t < M_PI/GRIDRES) { /* near first DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ return(rbf); } full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ return(rbf); } t /= full_dist; n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(mig); i++) for (j = 0; j < mtx_ncols(mig); j++) n += (mtx_coef(mig,i,j) > FTINY); #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); #endif rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); if (rbf == NULL) goto memerr; rbf->next = NULL; rbf->ejl = NULL; VCOPY(rbf->invec, invec); rbf->nrbf = n; rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; n = 0; /* advect RBF lobes */ for (i = 0; i < mtx_nrows(mig); i++) { const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; const float peak0 = rbf0i->peak; const double rad0 = R2ANG(rbf0i->crad); FVECT v0; float mv; ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); for (j = 0; j < mtx_ncols(mig); j++) if ((mv = mtx_coef(mig,i,j)) > FTINY) { const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; double rad1 = R2ANG(rbf1j->crad); FVECT v; int pos[2]; rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + rad1*rad1*t)); ovec_from_pos(v, rbf1j->gx, rbf1j->gy); geodesic(v, v0, v, t, GEOD_REL); pos_from_vec(pos, v); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n; } } rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ return(rbf); memerr: fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); exit(1); return(NULL); /* pro forma return */ } /* Partially advect between recorded incident angles and allocate new RBF */ RBFNODE * advect_rbf(const FVECT invec) { FVECT sivec; MIGRATION *miga[3]; RBFNODE *rbf; int sym; float mbfact, mcfact; int n, i, j, k; FVECT v0, v1, v2; double s, t; VCOPY(sivec, invec); /* find triangle/edge */ sym = get_interp(miga, sivec); if (sym < 0) /* can't interpolate? */ return(NULL); if (miga[1] == NULL) { /* advect along edge? */ rbf = e_advect_rbf(miga[0], sivec); rev_rbf_symmetry(rbf, sym); return(rbf); } #ifdef DEBUG if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | miga[0]->rbfv[1] != miga[1]->rbfv[0] | miga[1]->rbfv[1] != miga[2]->rbfv[1]) { fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); exit(1); } #endif /* figure out position */ fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec); normalize(v0); fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec); normalize(v2); fcross(v1, sivec, miga[1]->rbfv[1]->invec); normalize(v1); s = acos(DOT(v0,v1)) / acos(DOT(v0,v2)); geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, s, GEOD_REL); t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(miga[0]); i++) for (j = 0; j < mtx_ncols(miga[0]); j++) for (k = (mtx_coef(miga[0],i,j) > FTINY) * mtx_ncols(miga[2]); k--; ) n += (mtx_coef(miga[2],i,k) > FTINY && mtx_coef(miga[1],j,k) > FTINY); #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, miga[2]->rbfv[1]->nrbf, n); #endif rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); if (rbf == NULL) { fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname); exit(1); } rbf->next = NULL; rbf->ejl = NULL; VCOPY(rbf->invec, sivec); rbf->nrbf = n; n = 0; /* compute RBF lobes */ mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal * (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal); mcfact = (1.-s) * (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal); for (i = 0; i < mtx_nrows(miga[0]); i++) { const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; const float w0i = rbf0i->peak; const double rad0i = R2ANG(rbf0i->crad); ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); for (j = 0; j < mtx_ncols(miga[0]); j++) { const float ma = mtx_coef(miga[0],i,j); const RBFVAL *rbf1j; double rad1j, srad2; if (ma <= FTINY) continue; rbf1j = &miga[0]->rbfv[1]->rbfa[j]; rad1j = R2ANG(rbf1j->crad); srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); geodesic(v1, v0, v1, s, GEOD_REL); for (k = 0; k < mtx_ncols(miga[2]); k++) { float mb = mtx_coef(miga[1],j,k); float mc = mtx_coef(miga[2],i,k); const RBFVAL *rbf2k; double rad2k; FVECT vout; int pos[2]; if ((mb <= FTINY) | (mc <= FTINY)) continue; rbf2k = &miga[2]->rbfv[1]->rbfa[k]; rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); rad2k = R2ANG(rbf2k->crad); rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); geodesic(vout, v1, v2, t, GEOD_REL); pos_from_vec(pos, vout); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n; } } } rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact); rev_rbf_symmetry(rbf, sym); return(rbf); }