#ifndef lint static const char RCSid[] = "$Id: bsdfinterp.c,v 2.15 2013/10/23 03:41:39 greg Exp $"; #endif /* * Interpolate BSDF data from radial basis functions in advection mesh. * * G. Ward */ #define _USE_MATH_DEFINES #include #include #include #include #include "bsdfrep.h" /* Insert vertex in ordered list */ static void insert_vert(RBFNODE **vlist, RBFNODE *v) { int i, j; for (i = 0; vlist[i] != NULL; i++) { if (v == vlist[i]) return; if (v->ord < vlist[i]->ord) break; } for (j = i; vlist[j] != NULL; j++) ; while (j > i) { vlist[j] = vlist[j-1]; --j; } vlist[i] = v; } /* Sort triangle edges in standard order */ static int order_triangle(MIGRATION *miga[3]) { RBFNODE *vert[7]; MIGRATION *ord[3]; int i; /* order vertices, first */ memset(vert, 0, sizeof(vert)); for (i = 3; i--; ) { if (miga[i] == NULL) return(0); insert_vert(vert, miga[i]->rbfv[0]); insert_vert(vert, miga[i]->rbfv[1]); } /* should be just 3 vertices */ if ((vert[2] == NULL) | (vert[3] != NULL)) return(0); /* identify edge 0 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[0] && miga[i]->rbfv[1] == vert[1]) { ord[0] = miga[i]; break; } if (i < 0) return(0); /* identify edge 1 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[1] && miga[i]->rbfv[1] == vert[2]) { ord[1] = miga[i]; break; } if (i < 0) return(0); /* identify edge 2 */ for (i = 3; i--; ) if (miga[i]->rbfv[0] == vert[0] && miga[i]->rbfv[1] == vert[2]) { ord[2] = miga[i]; break; } if (i < 0) return(0); /* reassign order */ miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2]; return(1); } /* Determine if we are close enough to an edge */ static int on_edge(const MIGRATION *ej, const FVECT ivec) { double cos_a, cos_b, cos_c, cos_aplusb; /* use triangle inequality */ cos_a = DOT(ej->rbfv[0]->invec, ivec); if (cos_a <= 0) return(0); if (cos_a >= 1.) /* handles rounding error */ return(1); cos_b = DOT(ej->rbfv[1]->invec, ivec); if (cos_b <= 0) return(0); if (cos_b >= 1.) return(1); cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); if (cos_aplusb <= 0) return(0); cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); return(cos_c - cos_aplusb < .001); } /* Determine if we are inside the given triangle */ static int in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p) { FVECT vc; int sgn1, sgn2, sgn3; /* signed volume test */ VCROSS(vc, v1->invec, v2->invec); sgn1 = (DOT(p, vc) > 0); VCROSS(vc, v2->invec, v3->invec); sgn2 = (DOT(p, vc) > 0); if (sgn1 != sgn2) return(0); VCROSS(vc, v3->invec, v1->invec); sgn3 = (DOT(p, vc) > 0); return(sgn2 == sgn3); } /* Test (and set) bitmap for edge */ static int check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark) { int ejndx, bit2check; if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; else ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; bit2check = 1<<(ejndx&07); if (emap[ejndx>>3] & bit2check) return(0); if (mark) emap[ejndx>>3] |= bit2check; return(1); } /* Compute intersection with the given position over remaining mesh */ static int in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, const FVECT ivec, MIGRATION *mig) { RBFNODE *tv[2]; MIGRATION *sej[2], *dej[2]; int i; /* check visitation record */ if (!check_edge(emap, nedges, mig, 1)) return(0); if (on_edge(mig, ivec)) { miga[0] = mig; /* close enough to edge */ return(1); } if (!get_triangles(tv, mig)) /* do triangles either side? */ return(0); for (i = 2; i--; ) { /* identify edges to check */ MIGRATION *ej; sej[i] = dej[i] = NULL; if (tv[i] == NULL) continue; for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) { RBFNODE *rbfop = opp_rbf(tv[i],ej); if (rbfop == mig->rbfv[0]) { if (check_edge(emap, nedges, ej, 0)) sej[i] = ej; } else if (rbfop == mig->rbfv[1]) { if (check_edge(emap, nedges, ej, 0)) dej[i] = ej; } } } for (i = 2; i--; ) { /* check triangles just once */ if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i])) return(1); if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i])) return(1); if ((sej[i] == NULL) | (dej[i] == NULL)) continue; if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) { miga[0] = mig; miga[1] = sej[i]; miga[2] = dej[i]; return(1); } } return(0); /* not near this edge */ } /* Find edge(s) for interpolating the given vector, applying symmetry */ int get_interp(MIGRATION *miga[3], FVECT invec) { miga[0] = miga[1] = miga[2] = NULL; if (single_plane_incident) { /* isotropic BSDF? */ RBFNODE *rbf; /* find edge we're on */ for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { if (input_orient*rbf->invec[2] < input_orient*invec[2]) break; if (rbf->next != NULL && input_orient*rbf->next->invec[2] < input_orient*invec[2]) { for (miga[0] = rbf->ejl; miga[0] != NULL; miga[0] = nextedge(rbf,miga[0])) if (opp_rbf(rbf,miga[0]) == rbf->next) { double nf = 1. - rbf->invec[2]*rbf->invec[2]; if (nf > FTINY) { /* rotate to match */ nf = sqrt((1.-invec[2]*invec[2])/nf); invec[0] = nf*rbf->invec[0]; invec[1] = nf*rbf->invec[1]; } return(0); } break; } } return(-1); /* outside range! */ } { /* else use triangle mesh */ int sym = use_symmetry(invec); int nedges = 0; MIGRATION *mep; unsigned char *emap; /* clear visitation map */ for (mep = mig_list; mep != NULL; mep = mep->next) ++nedges; emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1); if (emap == NULL) { fprintf(stderr, "%s: Out of memory in get_interp()\n", progname); exit(1); } /* identify intersection */ if (!in_mesh(miga, emap, nedges, invec, mig_list)) { #ifdef DEBUG fprintf(stderr, "Incident angle (%.1f,%.1f) deg. outside mesh\n", get_theta180(invec), get_phi360(invec)); #endif sym = -1; /* outside mesh */ } else if (miga[1] != NULL && (miga[2] == NULL || !order_triangle(miga))) { #ifdef DEBUG fputs("Munged triangle in get_interp()\n", stderr); #endif sym = -1; } free(emap); return(sym); /* return in standard order */ } } /* Advect and allocate new RBF along edge */ static RBFNODE * e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) { double cthresh = FTINY; RBFNODE *rbf; int n, i, j; double t, full_dist; /* get relative position */ t = Acos(DOT(invec, mig->rbfv[0]->invec)); if (t < M_PI/grid_res) { /* near first DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ rbf->next = NULL; rbf->ejl = NULL; return(rbf); } full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); if (t > full_dist-M_PI/grid_res) { /* near second DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ rbf->next = NULL; rbf->ejl = NULL; return(rbf); } t /= full_dist; tryagain: n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(mig); i++) for (j = 0; j < mtx_ncols(mig); j++) n += (mtx_coef(mig,i,j) > cthresh); /* are we over our limit? */ if ((lobe_lim > 0) & (n > lobe_lim)) { cthresh = cthresh*2. + 10.*FTINY; goto tryagain; } #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); #endif rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); if (rbf == NULL) goto memerr; rbf->next = NULL; rbf->ejl = NULL; VCOPY(rbf->invec, invec); rbf->nrbf = n; rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; n = 0; /* advect RBF lobes */ for (i = 0; i < mtx_nrows(mig); i++) { const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; const float peak0 = rbf0i->peak; const double rad0 = R2ANG(rbf0i->crad); FVECT v0; float mv; ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); for (j = 0; j < mtx_ncols(mig); j++) if ((mv = mtx_coef(mig,i,j)) > cthresh) { const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; double rad2; FVECT v; int pos[2]; rad2 = R2ANG(rbf1j->crad); rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * rad0*rad0/rad2; rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); ovec_from_pos(v, rbf1j->gx, rbf1j->gy); geodesic(v, v0, v, t, GEOD_REL); pos_from_vec(pos, v); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n; } } rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ return(rbf); memerr: fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); exit(1); return(NULL); /* pro forma return */ } /* Partially advect between recorded incident angles and allocate new RBF */ RBFNODE * advect_rbf(const FVECT invec, int lobe_lim) { double cthresh = FTINY; FVECT sivec; MIGRATION *miga[3]; RBFNODE *rbf; int sym; float mbfact, mcfact; int n, i, j, k; FVECT v0, v1, v2; double s, t; VCOPY(sivec, invec); /* find triangle/edge */ sym = get_interp(miga, sivec); if (sym < 0) /* can't interpolate? */ return(NULL); if (miga[1] == NULL) { /* advect along edge? */ rbf = e_advect_rbf(miga[0], sivec, lobe_lim); if (single_plane_incident) rotate_rbf(rbf, invec); else rev_rbf_symmetry(rbf, sym); return(rbf); } #ifdef DEBUG if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | miga[0]->rbfv[1] != miga[1]->rbfv[0] | miga[1]->rbfv[1] != miga[2]->rbfv[1]) { fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); exit(1); } #endif /* figure out position */ fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec); normalize(v0); fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec); normalize(v2); fcross(v1, sivec, miga[1]->rbfv[1]->invec); normalize(v1); s = acos(DOT(v0,v1)) / acos(DOT(v0,v2)); geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, s, GEOD_REL); t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); tryagain: n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(miga[0]); i++) for (j = 0; j < mtx_ncols(miga[0]); j++) for (k = (mtx_coef(miga[0],i,j) > cthresh) * mtx_ncols(miga[2]); k--; ) n += (mtx_coef(miga[2],i,k) > cthresh || mtx_coef(miga[1],j,k) > cthresh); /* are we over our limit? */ if ((lobe_lim > 0) & (n > lobe_lim)) { cthresh = cthresh*2. + 10.*FTINY; goto tryagain; } #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, miga[2]->rbfv[1]->nrbf, n); #endif rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); if (rbf == NULL) { fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname); exit(1); } rbf->next = NULL; rbf->ejl = NULL; VCOPY(rbf->invec, sivec); rbf->nrbf = n; n = 0; /* compute RBF lobes */ mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal * (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal); mcfact = (1.-s) * (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal); for (i = 0; i < mtx_nrows(miga[0]); i++) { const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; const float w0i = rbf0i->peak; const double rad0i = R2ANG(rbf0i->crad); ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); for (j = 0; j < mtx_ncols(miga[0]); j++) { const float ma = mtx_coef(miga[0],i,j); const RBFVAL *rbf1j; double srad2; if (ma <= cthresh) continue; rbf1j = &miga[0]->rbfv[1]->rbfa[j]; srad2 = R2ANG(rbf1j->crad); srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); geodesic(v1, v0, v1, s, GEOD_REL); for (k = 0; k < mtx_ncols(miga[2]); k++) { float mb = mtx_coef(miga[1],j,k); float mc = mtx_coef(miga[2],i,k); const RBFVAL *rbf2k; double rad2; int pos[2]; if ((mb <= cthresh) & (mc <= cthresh)) continue; rbf2k = &miga[2]->rbfv[1]->rbfa[k]; rad2 = R2ANG(rbf2k->crad); rad2 = srad2 + t*rad2*rad2; rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * rad0i*rad0i/rad2; rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); geodesic(v2, v1, v2, t, GEOD_REL); pos_from_vec(pos, v2); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n; } } } rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact); rev_rbf_symmetry(rbf, sym); return(rbf); }