--- ray/src/cv/bsdfinterp.c 2012/11/26 07:02:20 2.7 +++ ray/src/cv/bsdfinterp.c 2012/12/14 22:41:44 2.9 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfinterp.c,v 2.7 2012/11/26 07:02:20 greg Exp $"; +static const char RCSid[] = "$Id: bsdfinterp.c,v 2.9 2012/12/14 22:41:44 greg Exp $"; #endif /* * Interpolate BSDF data from radial basis functions in advection mesh. @@ -151,8 +151,9 @@ static int in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, const FVECT ivec, MIGRATION *mig) { - MIGRATION *ej1, *ej2; - RBFNODE *tv; + RBFNODE *tv[2]; + MIGRATION *sej[2], *dej[2]; + int i; /* check visitation record */ if (!check_edge(emap, nedges, mig, 1)) return(0); @@ -160,30 +161,38 @@ in_mesh(MIGRATION *miga[3], unsigned char *emap, int n miga[0] = mig; /* close enough to edge */ return(1); } - /* do triangles either side */ - for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; - ej1 = nextedge(mig->rbfv[0],ej1)) { - if (ej1 == mig) - continue; - tv = opp_rbf(mig->rbfv[0],ej1); - for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) - if (opp_rbf(tv,ej2) == mig->rbfv[1]) { - int do_ej1 = check_edge(emap, nedges, ej1, 0); - int do_ej2 = check_edge(emap, nedges, ej2, 0); - if (do_ej1 && in_mesh(miga, emap, nedges, ivec, ej1)) - return(1); - if (do_ej2 && in_mesh(miga, emap, nedges, ivec, ej2)) - return(1); - /* check just once */ - if (do_ej1 & do_ej2 && in_tri(mig->rbfv[0], - mig->rbfv[1], tv, ivec)) { - miga[0] = mig; - miga[1] = ej1; - miga[2] = ej2; - return(1); + if (!get_triangles(tv, mig)) /* do triangles either side? */ + return(0); + for (i = 2; i--; ) { /* identify edges to check */ + MIGRATION *ej; + sej[i] = dej[i] = NULL; + if (tv[i] == NULL) + continue; + for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) { + RBFNODE *rbfop = opp_rbf(tv[i],ej); + if (rbfop == mig->rbfv[0]) { + if (check_edge(emap, nedges, ej, 0)) + sej[i] = ej; + } else if (rbfop == mig->rbfv[1]) { + if (check_edge(emap, nedges, ej, 0)) + dej[i] = ej; } } } + for (i = 2; i--; ) { /* check triangles just once */ + if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i])) + return(1); + if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i])) + return(1); + if ((sej[i] == NULL) | (dej[i] == NULL)) + continue; + if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) { + miga[0] = mig; + miga[1] = sej[i]; + miga[2] = dej[i]; + return(1); + } + } return(0); /* not near this edge */ } @@ -231,9 +240,14 @@ get_interp(MIGRATION *miga[3], FVECT invec) exit(1); } /* identify intersection */ - if (!in_mesh(miga, emap, nedges, invec, mig_list)) + if (!in_mesh(miga, emap, nedges, invec, mig_list)) { +#ifdef DEBUG + fprintf(stderr, + "Incident angle (%.1f,%.1f) deg. outside mesh\n", + get_theta180(invec), get_phi360(invec)); +#endif sym = -1; /* outside mesh */ - else if (miga[1] != NULL && + } else if (miga[1] != NULL && (miga[2] == NULL || !order_triangle(miga))) { #ifdef DEBUG fputs("Munged triangle in get_interp()\n", stderr); @@ -260,6 +274,7 @@ e_advect_rbf(const MIGRATION *mig, const FVECT invec) if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; return(rbf); } full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); @@ -269,6 +284,7 @@ e_advect_rbf(const MIGRATION *mig, const FVECT invec) if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; return(rbf); } t /= full_dist; @@ -305,7 +321,7 @@ e_advect_rbf(const MIGRATION *mig, const FVECT invec) rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + rad1*rad1*t)); ovec_from_pos(v, rbf1j->gx, rbf1j->gy); - geodesic(v, v0, v, t*full_dist, GEOD_RAD); + geodesic(v, v0, v, t, GEOD_REL); pos_from_vec(pos, v); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; @@ -331,7 +347,7 @@ advect_rbf(const FVECT invec) float mbfact, mcfact; int n, i, j, k; FVECT v0, v1, v2; - double s, t, t_full; + double s, t; VCOPY(sivec, invec); /* find triangle/edge */ sym = get_interp(miga, sivec); @@ -363,8 +379,7 @@ advect_rbf(const FVECT invec) s = acos(DOT(v0,v1)) / acos(DOT(v0,v2)); geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, s, GEOD_REL); - t = acos(DOT(v1,sivec)) / - (t_full = acos(DOT(v1,miga[1]->rbfv[1]->invec))); + t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(miga[0]); i++) for (j = 0; j < mtx_ncols(miga[0]); j++) @@ -411,7 +426,6 @@ advect_rbf(const FVECT invec) float mc = mtx_coef(miga[2],i,k); const RBFVAL *rbf2k; double rad2k; - FVECT vout; int pos[2]; if ((mb <= FTINY) & (mc <= FTINY)) continue; @@ -420,8 +434,8 @@ advect_rbf(const FVECT invec) rad2k = R2ANG(rbf2k->crad); rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); - geodesic(vout, v1, v2, t*t_full, GEOD_RAD); - pos_from_vec(pos, vout); + geodesic(v2, v1, v2, t, GEOD_REL); + pos_from_vec(pos, v2); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n;