| 51 |
|
insert_vert(vert, miga[i]->rbfv[1]); |
| 52 |
|
} |
| 53 |
|
/* should be just 3 vertices */ |
| 54 |
< |
if ((vert[3] == NULL) | (vert[4] != NULL)) |
| 54 |
> |
if ((vert[2] == NULL) | (vert[3] != NULL)) |
| 55 |
|
return(0); |
| 56 |
|
/* identify edge 0 */ |
| 57 |
|
for (i = 3; i--; ) |
| 85 |
|
return(1); |
| 86 |
|
} |
| 87 |
|
|
| 88 |
< |
/* Determine if we are close enough to the given edge */ |
| 88 |
> |
/* Determine if we are close enough to an edge */ |
| 89 |
|
static int |
| 90 |
|
on_edge(const MIGRATION *ej, const FVECT ivec) |
| 91 |
|
{ |
| 92 |
< |
double cos_a = DOT(ej->rbfv[0]->invec, ivec); |
| 93 |
< |
double cos_b = DOT(ej->rbfv[1]->invec, ivec); |
| 94 |
< |
double cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); |
| 95 |
< |
double cos_aplusb = cos_a*cos_b - |
| 96 |
< |
sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); |
| 92 |
> |
double cos_a, cos_b, cos_c, cos_aplusb; |
| 93 |
> |
/* use triangle inequality */ |
| 94 |
> |
cos_a = DOT(ej->rbfv[0]->invec, ivec); |
| 95 |
> |
if (cos_a <= 0) |
| 96 |
> |
return(0); |
| 97 |
|
|
| 98 |
< |
return(cos_aplusb - cos_c < .01); |
| 98 |
> |
cos_b = DOT(ej->rbfv[1]->invec, ivec); |
| 99 |
> |
if (cos_b <= 0) |
| 100 |
> |
return(0); |
| 101 |
> |
|
| 102 |
> |
cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); |
| 103 |
> |
if (cos_aplusb <= 0) |
| 104 |
> |
return(0); |
| 105 |
> |
|
| 106 |
> |
cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); |
| 107 |
> |
|
| 108 |
> |
return(cos_c - cos_aplusb < .001); |
| 109 |
|
} |
| 110 |
|
|
| 111 |
|
/* Determine if we are inside the given triangle */ |
| 126 |
|
return(sgn2 == sgn3); |
| 127 |
|
} |
| 128 |
|
|
| 129 |
+ |
/* Test and set for edge */ |
| 130 |
+ |
static int |
| 131 |
+ |
check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark) |
| 132 |
+ |
{ |
| 133 |
+ |
int ejndx, bit2check; |
| 134 |
+ |
|
| 135 |
+ |
if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) |
| 136 |
+ |
ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; |
| 137 |
+ |
else |
| 138 |
+ |
ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; |
| 139 |
+ |
|
| 140 |
+ |
bit2check = 1<<(ejndx&07); |
| 141 |
+ |
|
| 142 |
+ |
if (emap[ejndx>>3] & bit2check) |
| 143 |
+ |
return(0); |
| 144 |
+ |
if (mark) |
| 145 |
+ |
emap[ejndx>>3] |= bit2check; |
| 146 |
+ |
return(1); |
| 147 |
+ |
} |
| 148 |
+ |
|
| 149 |
|
/* Compute intersection with the given position over remaining mesh */ |
| 150 |
|
static int |
| 151 |
|
in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, |
| 153 |
|
{ |
| 154 |
|
MIGRATION *ej1, *ej2; |
| 155 |
|
RBFNODE *tv; |
| 126 |
– |
int ejndx; |
| 156 |
|
/* check visitation record */ |
| 157 |
< |
if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) |
| 129 |
< |
ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; |
| 130 |
< |
else |
| 131 |
< |
ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; |
| 132 |
< |
if (emap[ejndx>>3] & 1<<(ejndx&07)) /* tested already? */ |
| 157 |
> |
if (!check_edge(emap, nedges, mig, 1)) |
| 158 |
|
return(0); |
| 134 |
– |
emap[ejndx>>3] |= 1<<(ejndx&07); /* else mark & test it */ |
| 159 |
|
if (on_edge(mig, ivec)) { |
| 160 |
|
miga[0] = mig; /* close enough to edge */ |
| 161 |
|
return(1); |
| 163 |
|
/* do triangles either side */ |
| 164 |
|
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; |
| 165 |
|
ej1 = nextedge(mig->rbfv[0],ej1)) { |
| 166 |
< |
if (ej1 == mig) |
| 167 |
< |
continue; |
| 168 |
< |
tv = opp_rbf(mig->rbfv[0],ej1); |
| 169 |
< |
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
| 170 |
< |
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
| 171 |
< |
if (in_mesh(miga, emap, nedges, ivec, ej1)) |
| 172 |
< |
return(1); |
| 173 |
< |
if (in_mesh(miga, emap, nedges, ivec, ej2)) |
| 174 |
< |
return(1); |
| 175 |
< |
if (in_tri(mig->rbfv[0], mig->rbfv[1], |
| 176 |
< |
tv, ivec)) { |
| 177 |
< |
miga[0] = mig; |
| 178 |
< |
miga[1] = ej1; |
| 179 |
< |
miga[2] = ej2; |
| 180 |
< |
return(1); |
| 181 |
< |
} |
| 166 |
> |
if (ej1 == mig) |
| 167 |
> |
continue; |
| 168 |
> |
tv = opp_rbf(mig->rbfv[0],ej1); |
| 169 |
> |
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) |
| 170 |
> |
if (opp_rbf(tv,ej2) == mig->rbfv[1]) { |
| 171 |
> |
int do_ej1 = check_edge(emap, nedges, ej1, 0); |
| 172 |
> |
int do_ej2 = check_edge(emap, nedges, ej2, 0); |
| 173 |
> |
if (do_ej1 && in_mesh(miga, emap, nedges, ivec, ej1)) |
| 174 |
> |
return(1); |
| 175 |
> |
if (do_ej2 && in_mesh(miga, emap, nedges, ivec, ej2)) |
| 176 |
> |
return(1); |
| 177 |
> |
/* check just once */ |
| 178 |
> |
if (do_ej1 & do_ej2 && in_tri(mig->rbfv[0], |
| 179 |
> |
mig->rbfv[1], tv, ivec)) { |
| 180 |
> |
miga[0] = mig; |
| 181 |
> |
miga[1] = ej1; |
| 182 |
> |
miga[2] = ej2; |
| 183 |
> |
return(1); |
| 184 |
|
} |
| 185 |
+ |
} |
| 186 |
|
} |
| 187 |
< |
return(0); |
| 187 |
> |
return(0); /* not near this edge */ |
| 188 |
|
} |
| 189 |
|
|
| 190 |
|
/* Find edge(s) for interpolating the given vector, applying symmetry */ |
| 359 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) |
| 360 |
|
for (k = (mtx_coef(miga[0],i,j) > FTINY) * |
| 361 |
|
mtx_ncols(miga[2]); k--; ) |
| 362 |
< |
n += (mtx_coef(miga[2],i,k) > FTINY && |
| 362 |
> |
n += (mtx_coef(miga[2],i,k) > FTINY || |
| 363 |
|
mtx_coef(miga[1],j,k) > FTINY); |
| 364 |
|
#ifdef DEBUG |
| 365 |
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", |
| 402 |
|
double rad2k; |
| 403 |
|
FVECT vout; |
| 404 |
|
int pos[2]; |
| 405 |
< |
if ((mb <= FTINY) | (mc <= FTINY)) |
| 405 |
> |
if ((mb <= FTINY) & (mc <= FTINY)) |
| 406 |
|
continue; |
| 407 |
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k]; |
| 408 |
|
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); |