| 108 |
|
return(0); |
| 109 |
|
|
| 110 |
|
cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); |
| 111 |
< |
|
| 112 |
< |
return(cos_c - cos_aplusb < .001); |
| 111 |
> |
return(cos_c - cos_aplusb < .0002); |
| 112 |
|
} |
| 113 |
|
|
| 114 |
|
/* Determine if we are inside the given triangle */ |
| 214 |
|
for (miga[0] = rbf->ejl; miga[0] != NULL; |
| 215 |
|
miga[0] = nextedge(rbf,miga[0])) |
| 216 |
|
if (opp_rbf(rbf,miga[0]) == rbf->next) { |
| 217 |
< |
double nf = 1. - rbf->invec[2]*rbf->invec[2]; |
| 217 |
> |
double nf = 1. - |
| 218 |
> |
rbf->next->invec[2]*rbf->next->invec[2]; |
| 219 |
|
if (nf > FTINY) { /* rotate to match */ |
| 220 |
|
nf = sqrt((1.-invec[2]*invec[2])/nf); |
| 221 |
< |
invec[0] = nf*rbf->invec[0]; |
| 222 |
< |
invec[1] = nf*rbf->invec[1]; |
| 221 |
> |
invec[0] = nf*rbf->next->invec[0]; |
| 222 |
> |
invec[1] = nf*rbf->next->invec[1]; |
| 223 |
|
} |
| 224 |
< |
return(0); |
| 224 |
> |
return(0); /* rotational symmetry */ |
| 225 |
|
} |
| 226 |
|
break; |
| 227 |
|
} |
| 262 |
|
} |
| 263 |
|
} |
| 264 |
|
|
| 265 |
– |
/* Advect and allocate new RBF along edge */ |
| 266 |
– |
static RBFNODE * |
| 267 |
– |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 268 |
– |
{ |
| 269 |
– |
double cthresh = FTINY; |
| 270 |
– |
RBFNODE *rbf; |
| 271 |
– |
int n, i, j; |
| 272 |
– |
double t, full_dist; |
| 273 |
– |
/* get relative position */ |
| 274 |
– |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
| 275 |
– |
if (t < M_PI/grid_res) { /* near first DSF */ |
| 276 |
– |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
| 277 |
– |
rbf = (RBFNODE *)malloc(n); |
| 278 |
– |
if (rbf == NULL) |
| 279 |
– |
goto memerr; |
| 280 |
– |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
| 281 |
– |
rbf->next = NULL; rbf->ejl = NULL; |
| 282 |
– |
return(rbf); |
| 283 |
– |
} |
| 284 |
– |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
| 285 |
– |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */ |
| 286 |
– |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
| 287 |
– |
rbf = (RBFNODE *)malloc(n); |
| 288 |
– |
if (rbf == NULL) |
| 289 |
– |
goto memerr; |
| 290 |
– |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
| 291 |
– |
rbf->next = NULL; rbf->ejl = NULL; |
| 292 |
– |
return(rbf); |
| 293 |
– |
} |
| 294 |
– |
t /= full_dist; |
| 295 |
– |
tryagain: |
| 296 |
– |
n = 0; /* count migrating particles */ |
| 297 |
– |
for (i = 0; i < mtx_nrows(mig); i++) |
| 298 |
– |
for (j = 0; j < mtx_ncols(mig); j++) |
| 299 |
– |
n += (mtx_coef(mig,i,j) > cthresh); |
| 300 |
– |
/* are we over our limit? */ |
| 301 |
– |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 302 |
– |
cthresh = cthresh*2. + 10.*FTINY; |
| 303 |
– |
goto tryagain; |
| 304 |
– |
} |
| 305 |
– |
#ifdef DEBUG |
| 306 |
– |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
| 307 |
– |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
| 308 |
– |
#endif |
| 309 |
– |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
| 310 |
– |
if (rbf == NULL) |
| 311 |
– |
goto memerr; |
| 312 |
– |
rbf->next = NULL; rbf->ejl = NULL; |
| 313 |
– |
VCOPY(rbf->invec, invec); |
| 314 |
– |
rbf->nrbf = n; |
| 315 |
– |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
| 316 |
– |
n = 0; /* advect RBF lobes */ |
| 317 |
– |
for (i = 0; i < mtx_nrows(mig); i++) { |
| 318 |
– |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
| 319 |
– |
const float peak0 = rbf0i->peak; |
| 320 |
– |
const double rad0 = R2ANG(rbf0i->crad); |
| 321 |
– |
FVECT v0; |
| 322 |
– |
float mv; |
| 323 |
– |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 324 |
– |
for (j = 0; j < mtx_ncols(mig); j++) |
| 325 |
– |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 326 |
– |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 327 |
– |
double rad2; |
| 328 |
– |
FVECT v; |
| 329 |
– |
int pos[2]; |
| 330 |
– |
rad2 = R2ANG(rbf1j->crad); |
| 331 |
– |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 332 |
– |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 333 |
– |
rad0*rad0/rad2; |
| 334 |
– |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 335 |
– |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 336 |
– |
geodesic(v, v0, v, t, GEOD_REL); |
| 337 |
– |
pos_from_vec(pos, v); |
| 338 |
– |
rbf->rbfa[n].gx = pos[0]; |
| 339 |
– |
rbf->rbfa[n].gy = pos[1]; |
| 340 |
– |
++n; |
| 341 |
– |
} |
| 342 |
– |
} |
| 343 |
– |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
| 344 |
– |
return(rbf); |
| 345 |
– |
memerr: |
| 346 |
– |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
| 347 |
– |
exit(1); |
| 348 |
– |
return(NULL); /* pro forma return */ |
| 349 |
– |
} |
| 350 |
– |
|
| 265 |
|
/* Advect between recorded incident angles and allocate new RBF */ |
| 266 |
|
RBFNODE * |
| 267 |
|
advect_rbf(const FVECT invec, int lobe_lim) |
| 279 |
|
VCOPY(sivec, invec); /* find triangle/edge */ |
| 280 |
|
sym = get_interp(miga, sivec); |
| 281 |
|
if (sym < 0) /* can't interpolate? */ |
| 282 |
< |
return(NULL); |
| 282 |
> |
return(def_rbf_spec(invec)); |
| 283 |
|
if (miga[1] == NULL) { /* advect along edge? */ |
| 284 |
|
rbf = e_advect_rbf(miga[0], sivec, lobe_lim); |
| 285 |
|
if (single_plane_incident) |
| 342 |
|
const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; |
| 343 |
|
const float w0i = rbf0i->peak; |
| 344 |
|
const double rad0i = R2ANG(rbf0i->crad); |
| 345 |
+ |
C_COLOR cc0; |
| 346 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 347 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
| 348 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) { |
| 349 |
|
const float ma = mtx_coef(miga[0],i,j); |
| 350 |
|
const RBFVAL *rbf1j; |
| 351 |
+ |
C_COLOR ccs; |
| 352 |
|
double srad2; |
| 353 |
|
if (ma <= cthresh) |
| 354 |
|
continue; |
| 355 |
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j]; |
| 356 |
+ |
c_decodeChroma(&ccs, rbf1j->chroma); |
| 357 |
+ |
c_cmix(&ccs, 1.-s, &cc0, s, &ccs); |
| 358 |
|
srad2 = R2ANG(rbf1j->crad); |
| 359 |
|
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; |
| 360 |
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); |
| 372 |
|
rad2 = srad2 + t*rad2*rad2; |
| 373 |
|
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * |
| 374 |
|
rad0i*rad0i/rad2; |
| 375 |
+ |
if (rbf_colorimetry == RBCtristimulus) { |
| 376 |
+ |
C_COLOR cres; |
| 377 |
+ |
c_decodeChroma(&cres, rbf2k->chroma); |
| 378 |
+ |
c_cmix(&cres, 1.-t, &ccs, t, &cres); |
| 379 |
+ |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
| 380 |
+ |
} else |
| 381 |
+ |
rbf->rbfa[n].chroma = c_dfchroma; |
| 382 |
|
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 383 |
|
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); |
| 384 |
|
geodesic(v2, v1, v2, t, GEOD_REL); |