--- ray/src/cv/bsdfinterp.c 2012/10/23 05:10:42 2.3 +++ ray/src/cv/bsdfinterp.c 2014/10/26 17:35:53 2.20 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfinterp.c,v 2.3 2012/10/23 05:10:42 greg Exp $"; +static const char RCSid[] = "$Id: bsdfinterp.c,v 2.20 2014/10/26 17:35:53 greg Exp $"; #endif /* * Interpolate BSDF data from radial basis functions in advection mesh. @@ -51,7 +51,7 @@ order_triangle(MIGRATION *miga[3]) insert_vert(vert, miga[i]->rbfv[1]); } /* should be just 3 vertices */ - if ((vert[3] == NULL) | (vert[4] != NULL)) + if ((vert[2] == NULL) | (vert[3] != NULL)) return(0); /* identify edge 0 */ for (i = 3; i--; ) @@ -85,17 +85,31 @@ order_triangle(MIGRATION *miga[3]) return(1); } -/* Determine if we are close enough to the given edge */ +/* Determine if we are close enough to an edge */ static int on_edge(const MIGRATION *ej, const FVECT ivec) { - double cos_a = DOT(ej->rbfv[0]->invec, ivec); - double cos_b = DOT(ej->rbfv[1]->invec, ivec); - double cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); - double cos_aplusb = cos_a*cos_b - - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); + double cos_a, cos_b, cos_c, cos_aplusb; + /* use triangle inequality */ + cos_a = DOT(ej->rbfv[0]->invec, ivec); + if (cos_a <= 0) + return(0); + if (cos_a >= 1.) /* handles rounding error */ + return(1); - return(cos_aplusb - cos_c < .01); + cos_b = DOT(ej->rbfv[1]->invec, ivec); + if (cos_b <= 0) + return(0); + if (cos_b >= 1.) + return(1); + + cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); + if (cos_aplusb <= 0) + return(0); + + cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); + + return(cos_c - cos_aplusb < .001); } /* Determine if we are inside the given triangle */ @@ -116,48 +130,74 @@ in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBF return(sgn2 == sgn3); } -/* Compute intersection with the given position over remaining mesh */ +/* Test (and set) bitmap for edge */ static int -in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, - const FVECT ivec, MIGRATION *mig) +check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark) { - MIGRATION *ej1, *ej2; - RBFNODE *tv; - int ejndx; - /* check visitation record */ + int ejndx, bit2check; + if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; else ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; - if (emap[ejndx>>3] & 1<<(ejndx&07)) /* tested already? */ + + bit2check = 1<<(ejndx&07); + + if (emap[ejndx>>3] & bit2check) return(0); - emap[ejndx>>3] |= 1<<(ejndx&07); /* else mark & test it */ + if (mark) + emap[ejndx>>3] |= bit2check; + return(1); +} + +/* Compute intersection with the given position over remaining mesh */ +static int +in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, + const FVECT ivec, MIGRATION *mig) +{ + RBFNODE *tv[2]; + MIGRATION *sej[2], *dej[2]; + int i; + /* check visitation record */ + if (!check_edge(emap, nedges, mig, 1)) + return(0); if (on_edge(mig, ivec)) { miga[0] = mig; /* close enough to edge */ return(1); } - /* do triangles either side */ - for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL; - ej1 = nextedge(mig->rbfv[0],ej1)) { - if (ej1 == mig) + if (!get_triangles(tv, mig)) /* do triangles either side? */ + return(0); + for (i = 2; i--; ) { /* identify edges to check */ + MIGRATION *ej; + sej[i] = dej[i] = NULL; + if (tv[i] == NULL) continue; - tv = opp_rbf(mig->rbfv[0],ej1); - for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2)) - if (opp_rbf(tv,ej2) == mig->rbfv[1]) { - if (in_mesh(miga, emap, nedges, ivec, ej1)) - return(1); - if (in_mesh(miga, emap, nedges, ivec, ej2)) - return(1); - if (in_tri(mig->rbfv[0], mig->rbfv[1], - tv, ivec)) { - miga[0] = mig; - miga[1] = ej1; - miga[2] = ej2; - return(1); - } + for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) { + RBFNODE *rbfop = opp_rbf(tv[i],ej); + if (rbfop == mig->rbfv[0]) { + if (check_edge(emap, nedges, ej, 0)) + sej[i] = ej; + } else if (rbfop == mig->rbfv[1]) { + if (check_edge(emap, nedges, ej, 0)) + dej[i] = ej; } + } } - return(0); + for (i = 2; i--; ) { /* check triangles just once */ + if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i])) + return(1); + if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i])) + return(1); + if ((sej[i] == NULL) | (dej[i] == NULL)) + continue; + if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) { + miga[0] = mig; + miga[1] = sej[i]; + miga[2] = dej[i]; + return(1); + } + } + return(0); /* not near this edge */ } /* Find edge(s) for interpolating the given vector, applying symmetry */ @@ -166,21 +206,28 @@ get_interp(MIGRATION *miga[3], FVECT invec) { miga[0] = miga[1] = miga[2] = NULL; if (single_plane_incident) { /* isotropic BSDF? */ - RBFNODE *rbf; /* find edge we're on */ - for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { - if (input_orient*rbf->invec[2] < input_orient*invec[2]) - break; - if (rbf->next != NULL && - input_orient*rbf->next->invec[2] < - input_orient*invec[2]) { - for (miga[0] = rbf->ejl; miga[0] != NULL; - miga[0] = nextedge(rbf,miga[0])) - if (opp_rbf(rbf,miga[0]) == rbf->next) - return(0); - break; + RBFNODE *rbf; /* find edge we're on */ + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { + if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY) + break; + if (rbf->next != NULL && input_orient*rbf->next->invec[2] < + input_orient*invec[2]+FTINY) { + for (miga[0] = rbf->ejl; miga[0] != NULL; + miga[0] = nextedge(rbf,miga[0])) + if (opp_rbf(rbf,miga[0]) == rbf->next) { + double nf = 1. - + rbf->next->invec[2]*rbf->next->invec[2]; + if (nf > FTINY) { /* rotate to match */ + nf = sqrt((1.-invec[2]*invec[2])/nf); + invec[0] = nf*rbf->next->invec[0]; + invec[1] = nf*rbf->next->invec[1]; + } + return(0); /* rotational symmetry */ } + break; } - return(-1); /* outside range! */ + } + return(-1); /* outside range! */ } { /* else use triangle mesh */ int sym = use_symmetry(invec); @@ -197,9 +244,14 @@ get_interp(MIGRATION *miga[3], FVECT invec) exit(1); } /* identify intersection */ - if (!in_mesh(miga, emap, nedges, invec, mig_list)) + if (!in_mesh(miga, emap, nedges, invec, mig_list)) { +#ifdef DEBUG + fprintf(stderr, + "Incident angle (%.1f,%.1f) deg. outside mesh\n", + get_theta180(invec), get_phi360(invec)); +#endif sym = -1; /* outside mesh */ - else if (miga[1] != NULL && + } else if (miga[1] != NULL && (miga[2] == NULL || !order_triangle(miga))) { #ifdef DEBUG fputs("Munged triangle in get_interp()\n", stderr); @@ -211,85 +263,11 @@ get_interp(MIGRATION *miga[3], FVECT invec) } } -/* Advect and allocate new RBF along edge */ -static RBFNODE * -e_advect_rbf(const MIGRATION *mig, const FVECT invec) -{ - RBFNODE *rbf; - int n, i, j; - double t, full_dist; - /* get relative position */ - t = acos(DOT(invec, mig->rbfv[0]->invec)); - if (t < M_PI/GRIDRES) { /* near first DSF */ - n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); - rbf = (RBFNODE *)malloc(n); - if (rbf == NULL) - goto memerr; - memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ - return(rbf); - } - full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); - if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */ - n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); - rbf = (RBFNODE *)malloc(n); - if (rbf == NULL) - goto memerr; - memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ - return(rbf); - } - t /= full_dist; - n = 0; /* count migrating particles */ - for (i = 0; i < mtx_nrows(mig); i++) - for (j = 0; j < mtx_ncols(mig); j++) - n += (mtx_coef(mig,i,j) > FTINY); -#ifdef DEBUG - fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", - mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); -#endif - rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); - if (rbf == NULL) - goto memerr; - rbf->next = NULL; rbf->ejl = NULL; - VCOPY(rbf->invec, invec); - rbf->nrbf = n; - rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; - n = 0; /* advect RBF lobes */ - for (i = 0; i < mtx_nrows(mig); i++) { - const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; - const float peak0 = rbf0i->peak; - const double rad0 = R2ANG(rbf0i->crad); - FVECT v0; - float mv; - ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); - for (j = 0; j < mtx_ncols(mig); j++) - if ((mv = mtx_coef(mig,i,j)) > FTINY) { - const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; - double rad1 = R2ANG(rbf1j->crad); - FVECT v; - int pos[2]; - rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; - rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + - rad1*rad1*t)); - ovec_from_pos(v, rbf1j->gx, rbf1j->gy); - geodesic(v, v0, v, t, GEOD_REL); - pos_from_vec(pos, v); - rbf->rbfa[n].gx = pos[0]; - rbf->rbfa[n].gy = pos[1]; - ++n; - } - } - rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ - return(rbf); -memerr: - fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); - exit(1); - return(NULL); /* pro forma return */ -} - -/* Partially advect between recorded incident angles and allocate new RBF */ +/* Advect between recorded incident angles and allocate new RBF */ RBFNODE * -advect_rbf(const FVECT invec) +advect_rbf(const FVECT invec, int lobe_lim) { + double cthresh = FTINY; FVECT sivec; MIGRATION *miga[3]; RBFNODE *rbf; @@ -302,16 +280,19 @@ advect_rbf(const FVECT invec) VCOPY(sivec, invec); /* find triangle/edge */ sym = get_interp(miga, sivec); if (sym < 0) /* can't interpolate? */ - return(NULL); + return(def_rbf_spec(invec)); if (miga[1] == NULL) { /* advect along edge? */ - rbf = e_advect_rbf(miga[0], sivec); - rev_rbf_symmetry(rbf, sym); + rbf = e_advect_rbf(miga[0], sivec, lobe_lim); + if (single_plane_incident) + rotate_rbf(rbf, invec); + else + rev_rbf_symmetry(rbf, sym); return(rbf); } #ifdef DEBUG - if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | - miga[0]->rbfv[1] != miga[1]->rbfv[0] | - miga[1]->rbfv[1] != miga[2]->rbfv[1]) { + if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) | + (miga[0]->rbfv[1] != miga[1]->rbfv[0]) | + (miga[1]->rbfv[1] != miga[2]->rbfv[1])) { fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); exit(1); } @@ -327,13 +308,19 @@ advect_rbf(const FVECT invec) geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, s, GEOD_REL); t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); +tryagain: n = 0; /* count migrating particles */ for (i = 0; i < mtx_nrows(miga[0]); i++) for (j = 0; j < mtx_ncols(miga[0]); j++) - for (k = (mtx_coef(miga[0],i,j) > FTINY) * + for (k = (mtx_coef(miga[0],i,j) > cthresh) * mtx_ncols(miga[2]); k--; ) - n += (mtx_coef(miga[2],i,k) > FTINY && - mtx_coef(miga[1],j,k) > FTINY); + n += (mtx_coef(miga[2],i,k) > cthresh || + mtx_coef(miga[1],j,k) > cthresh); + /* are we over our limit? */ + if ((lobe_lim > 0) & (n > lobe_lim)) { + cthresh = cthresh*2. + 10.*FTINY; + goto tryagain; + } #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, @@ -360,30 +347,31 @@ advect_rbf(const FVECT invec) for (j = 0; j < mtx_ncols(miga[0]); j++) { const float ma = mtx_coef(miga[0],i,j); const RBFVAL *rbf1j; - double rad1j, srad2; - if (ma <= FTINY) + double srad2; + if (ma <= cthresh) continue; rbf1j = &miga[0]->rbfv[1]->rbfa[j]; - rad1j = R2ANG(rbf1j->crad); - srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; + srad2 = R2ANG(rbf1j->crad); + srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); geodesic(v1, v0, v1, s, GEOD_REL); for (k = 0; k < mtx_ncols(miga[2]); k++) { float mb = mtx_coef(miga[1],j,k); float mc = mtx_coef(miga[2],i,k); const RBFVAL *rbf2k; - double rad2k; - FVECT vout; + double rad2; int pos[2]; - if ((mb <= FTINY) | (mc <= FTINY)) + if ((mb <= cthresh) & (mc <= cthresh)) continue; rbf2k = &miga[2]->rbfv[1]->rbfa[k]; - rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); - rad2k = R2ANG(rbf2k->crad); - rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); + rad2 = R2ANG(rbf2k->crad); + rad2 = srad2 + t*rad2*rad2; + rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * + rad0i*rad0i/rad2; + rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); - geodesic(vout, v1, v2, t, GEOD_REL); - pos_from_vec(pos, vout); + geodesic(v2, v1, v2, t, GEOD_REL); + pos_from_vec(pos, v2); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n;