13 |
|
#include <string.h> |
14 |
|
#include <math.h> |
15 |
|
#include "bsdfrep.h" |
16 |
– |
/* migration edges drawn in raster fashion */ |
17 |
– |
MIGRATION *mig_grid[GRIDRES][GRIDRES]; |
16 |
|
|
19 |
– |
#ifdef DEBUG |
20 |
– |
#include "random.h" |
21 |
– |
#include "bmpfile.h" |
22 |
– |
/* Hash pointer to byte value (must return 0 for NULL) */ |
23 |
– |
static int |
24 |
– |
byte_hash(const void *p) |
25 |
– |
{ |
26 |
– |
size_t h = (size_t)p; |
27 |
– |
h ^= (size_t)p >> 8; |
28 |
– |
h ^= (size_t)p >> 16; |
29 |
– |
h ^= (size_t)p >> 24; |
30 |
– |
return(h & 0xff); |
31 |
– |
} |
32 |
– |
/* Write out BMP image showing edges */ |
33 |
– |
static void |
34 |
– |
write_edge_image(const char *fname) |
35 |
– |
{ |
36 |
– |
BMPHeader *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256); |
37 |
– |
BMPWriter *wtr; |
38 |
– |
int i, j; |
39 |
– |
|
40 |
– |
fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname); |
41 |
– |
hdr->compr = BI_RLE8; |
42 |
– |
for (i = 256; --i; ) { /* assign random color map */ |
43 |
– |
hdr->palette[i].r = random() & 0xff; |
44 |
– |
hdr->palette[i].g = random() & 0xff; |
45 |
– |
hdr->palette[i].b = random() & 0xff; |
46 |
– |
/* reject dark colors */ |
47 |
– |
i += (hdr->palette[i].r + hdr->palette[i].g + |
48 |
– |
hdr->palette[i].b < 128); |
49 |
– |
} |
50 |
– |
hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0; |
51 |
– |
/* open output */ |
52 |
– |
wtr = BMPopenOutputFile(fname, hdr); |
53 |
– |
if (wtr == NULL) { |
54 |
– |
free(hdr); |
55 |
– |
return; |
56 |
– |
} |
57 |
– |
for (i = 0; i < GRIDRES; i++) { /* write scanlines */ |
58 |
– |
for (j = 0; j < GRIDRES; j++) |
59 |
– |
wtr->scanline[j] = byte_hash(mig_grid[i][j]); |
60 |
– |
if (BMPwriteScanline(wtr) != BIR_OK) |
61 |
– |
break; |
62 |
– |
} |
63 |
– |
BMPcloseOutput(wtr); /* close & clean up */ |
64 |
– |
} |
65 |
– |
#endif |
66 |
– |
|
67 |
– |
/* Draw edge list into mig_grid array */ |
68 |
– |
void |
69 |
– |
draw_edges(void) |
70 |
– |
{ |
71 |
– |
int nnull = 0, ntot = 0; |
72 |
– |
MIGRATION *ej; |
73 |
– |
int p0[2], p1[2]; |
74 |
– |
|
75 |
– |
memset(mig_grid, 0, sizeof(mig_grid)); |
76 |
– |
for (ej = mig_list; ej != NULL; ej = ej->next) { |
77 |
– |
++ntot; |
78 |
– |
pos_from_vec(p0, ej->rbfv[0]->invec); |
79 |
– |
pos_from_vec(p1, ej->rbfv[1]->invec); |
80 |
– |
if ((p0[0] == p1[0]) & (p0[1] == p1[1])) { |
81 |
– |
++nnull; |
82 |
– |
mig_grid[p0[0]][p0[1]] = ej; |
83 |
– |
continue; |
84 |
– |
} |
85 |
– |
if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) { |
86 |
– |
const int xstep = 2*(p1[0] > p0[0]) - 1; |
87 |
– |
const double ystep = (double)((p1[1]-p0[1])*xstep) / |
88 |
– |
(double)(p1[0]-p0[0]); |
89 |
– |
int x; |
90 |
– |
double y; |
91 |
– |
for (x = p0[0], y = p0[1]+.5; x != p1[0]; |
92 |
– |
x += xstep, y += ystep) |
93 |
– |
mig_grid[x][(int)y] = ej; |
94 |
– |
mig_grid[x][(int)y] = ej; |
95 |
– |
} else { |
96 |
– |
const int ystep = 2*(p1[1] > p0[1]) - 1; |
97 |
– |
const double xstep = (double)((p1[0]-p0[0])*ystep) / |
98 |
– |
(double)(p1[1]-p0[1]); |
99 |
– |
int y; |
100 |
– |
double x; |
101 |
– |
for (y = p0[1], x = p0[0]+.5; y != p1[1]; |
102 |
– |
y += ystep, x += xstep) |
103 |
– |
mig_grid[(int)x][y] = ej; |
104 |
– |
mig_grid[(int)x][y] = ej; |
105 |
– |
} |
106 |
– |
} |
107 |
– |
if (nnull) |
108 |
– |
fprintf(stderr, "Warning: %d of %d edges are null\n", |
109 |
– |
nnull, ntot); |
110 |
– |
#ifdef DEBUG |
111 |
– |
write_edge_image("bsdf_edges.bmp"); |
112 |
– |
#endif |
113 |
– |
} |
114 |
– |
|
115 |
– |
/* Identify enclosing triangle for this position (flood fill raster check) */ |
116 |
– |
static int |
117 |
– |
identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8], |
118 |
– |
int px, int py) |
119 |
– |
{ |
120 |
– |
const int btest = 1<<(py&07); |
121 |
– |
|
122 |
– |
if (vmap[px][py>>3] & btest) /* already visited here? */ |
123 |
– |
return(1); |
124 |
– |
/* else mark it */ |
125 |
– |
vmap[px][py>>3] |= btest; |
126 |
– |
|
127 |
– |
if (mig_grid[px][py] != NULL) { /* are we on an edge? */ |
128 |
– |
int i; |
129 |
– |
for (i = 0; i < 3; i++) { |
130 |
– |
if (miga[i] == mig_grid[px][py]) |
131 |
– |
return(1); |
132 |
– |
if (miga[i] != NULL) |
133 |
– |
continue; |
134 |
– |
miga[i] = mig_grid[px][py]; |
135 |
– |
return(1); |
136 |
– |
} |
137 |
– |
return(0); /* outside triangle! */ |
138 |
– |
} |
139 |
– |
/* check neighbors (flood) */ |
140 |
– |
if (px > 0 && !identify_tri(miga, vmap, px-1, py)) |
141 |
– |
return(0); |
142 |
– |
if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py)) |
143 |
– |
return(0); |
144 |
– |
if (py > 0 && !identify_tri(miga, vmap, px, py-1)) |
145 |
– |
return(0); |
146 |
– |
if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1)) |
147 |
– |
return(0); |
148 |
– |
return(1); /* this neighborhood done */ |
149 |
– |
} |
150 |
– |
|
17 |
|
/* Insert vertex in ordered list */ |
18 |
|
static void |
19 |
|
insert_vert(RBFNODE **vlist, RBFNODE *v) |
51 |
|
insert_vert(vert, miga[i]->rbfv[1]); |
52 |
|
} |
53 |
|
/* should be just 3 vertices */ |
54 |
< |
if ((vert[3] == NULL) | (vert[4] != NULL)) |
54 |
> |
if ((vert[2] == NULL) | (vert[3] != NULL)) |
55 |
|
return(0); |
56 |
|
/* identify edge 0 */ |
57 |
|
for (i = 3; i--; ) |
85 |
|
return(1); |
86 |
|
} |
87 |
|
|
88 |
+ |
/* Determine if we are close enough to an edge */ |
89 |
+ |
static int |
90 |
+ |
on_edge(const MIGRATION *ej, const FVECT ivec) |
91 |
+ |
{ |
92 |
+ |
double cos_a, cos_b, cos_c, cos_aplusb; |
93 |
+ |
/* use triangle inequality */ |
94 |
+ |
cos_a = DOT(ej->rbfv[0]->invec, ivec); |
95 |
+ |
if (cos_a <= 0) |
96 |
+ |
return(0); |
97 |
+ |
if (cos_a >= 1.) /* handles rounding error */ |
98 |
+ |
return(1); |
99 |
+ |
|
100 |
+ |
cos_b = DOT(ej->rbfv[1]->invec, ivec); |
101 |
+ |
if (cos_b <= 0) |
102 |
+ |
return(0); |
103 |
+ |
if (cos_b >= 1.) |
104 |
+ |
return(1); |
105 |
+ |
|
106 |
+ |
cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); |
107 |
+ |
if (cos_aplusb <= 0) |
108 |
+ |
return(0); |
109 |
+ |
|
110 |
+ |
cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); |
111 |
+ |
return(cos_c - cos_aplusb < .0002); |
112 |
+ |
} |
113 |
+ |
|
114 |
+ |
/* Determine if we are inside the given triangle */ |
115 |
+ |
static int |
116 |
+ |
in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p) |
117 |
+ |
{ |
118 |
+ |
FVECT vc; |
119 |
+ |
int sgn1, sgn2, sgn3; |
120 |
+ |
/* signed volume test */ |
121 |
+ |
VCROSS(vc, v1->invec, v2->invec); |
122 |
+ |
sgn1 = (DOT(p, vc) > 0); |
123 |
+ |
VCROSS(vc, v2->invec, v3->invec); |
124 |
+ |
sgn2 = (DOT(p, vc) > 0); |
125 |
+ |
if (sgn1 != sgn2) |
126 |
+ |
return(0); |
127 |
+ |
VCROSS(vc, v3->invec, v1->invec); |
128 |
+ |
sgn3 = (DOT(p, vc) > 0); |
129 |
+ |
return(sgn2 == sgn3); |
130 |
+ |
} |
131 |
+ |
|
132 |
+ |
/* Test (and set) bitmap for edge */ |
133 |
+ |
static int |
134 |
+ |
check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark) |
135 |
+ |
{ |
136 |
+ |
int ejndx, bit2check; |
137 |
+ |
|
138 |
+ |
if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) |
139 |
+ |
ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; |
140 |
+ |
else |
141 |
+ |
ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; |
142 |
+ |
|
143 |
+ |
bit2check = 1<<(ejndx&07); |
144 |
+ |
|
145 |
+ |
if (emap[ejndx>>3] & bit2check) |
146 |
+ |
return(0); |
147 |
+ |
if (mark) |
148 |
+ |
emap[ejndx>>3] |= bit2check; |
149 |
+ |
return(1); |
150 |
+ |
} |
151 |
+ |
|
152 |
+ |
/* Compute intersection with the given position over remaining mesh */ |
153 |
+ |
static int |
154 |
+ |
in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, |
155 |
+ |
const FVECT ivec, MIGRATION *mig) |
156 |
+ |
{ |
157 |
+ |
RBFNODE *tv[2]; |
158 |
+ |
MIGRATION *sej[2], *dej[2]; |
159 |
+ |
int i; |
160 |
+ |
/* check visitation record */ |
161 |
+ |
if (!check_edge(emap, nedges, mig, 1)) |
162 |
+ |
return(0); |
163 |
+ |
if (on_edge(mig, ivec)) { |
164 |
+ |
miga[0] = mig; /* close enough to edge */ |
165 |
+ |
return(1); |
166 |
+ |
} |
167 |
+ |
if (!get_triangles(tv, mig)) /* do triangles either side? */ |
168 |
+ |
return(0); |
169 |
+ |
for (i = 2; i--; ) { /* identify edges to check */ |
170 |
+ |
MIGRATION *ej; |
171 |
+ |
sej[i] = dej[i] = NULL; |
172 |
+ |
if (tv[i] == NULL) |
173 |
+ |
continue; |
174 |
+ |
for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) { |
175 |
+ |
RBFNODE *rbfop = opp_rbf(tv[i],ej); |
176 |
+ |
if (rbfop == mig->rbfv[0]) { |
177 |
+ |
if (check_edge(emap, nedges, ej, 0)) |
178 |
+ |
sej[i] = ej; |
179 |
+ |
} else if (rbfop == mig->rbfv[1]) { |
180 |
+ |
if (check_edge(emap, nedges, ej, 0)) |
181 |
+ |
dej[i] = ej; |
182 |
+ |
} |
183 |
+ |
} |
184 |
+ |
} |
185 |
+ |
for (i = 2; i--; ) { /* check triangles just once */ |
186 |
+ |
if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i])) |
187 |
+ |
return(1); |
188 |
+ |
if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i])) |
189 |
+ |
return(1); |
190 |
+ |
if ((sej[i] == NULL) | (dej[i] == NULL)) |
191 |
+ |
continue; |
192 |
+ |
if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) { |
193 |
+ |
miga[0] = mig; |
194 |
+ |
miga[1] = sej[i]; |
195 |
+ |
miga[2] = dej[i]; |
196 |
+ |
return(1); |
197 |
+ |
} |
198 |
+ |
} |
199 |
+ |
return(0); /* not near this edge */ |
200 |
+ |
} |
201 |
+ |
|
202 |
|
/* Find edge(s) for interpolating the given vector, applying symmetry */ |
203 |
|
int |
204 |
|
get_interp(MIGRATION *miga[3], FVECT invec) |
205 |
|
{ |
206 |
|
miga[0] = miga[1] = miga[2] = NULL; |
207 |
|
if (single_plane_incident) { /* isotropic BSDF? */ |
208 |
< |
RBFNODE *rbf; /* find edge we're on */ |
209 |
< |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
210 |
< |
if (input_orient*rbf->invec[2] < input_orient*invec[2]) |
211 |
< |
break; |
212 |
< |
if (rbf->next != NULL && |
213 |
< |
input_orient*rbf->next->invec[2] < |
214 |
< |
input_orient*invec[2]) { |
215 |
< |
for (miga[0] = rbf->ejl; miga[0] != NULL; |
216 |
< |
miga[0] = nextedge(rbf,miga[0])) |
217 |
< |
if (opp_rbf(rbf,miga[0]) == rbf->next) |
218 |
< |
return(0); |
219 |
< |
break; |
208 |
> |
RBFNODE *rbf; /* find edge we're on */ |
209 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
210 |
> |
if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY) |
211 |
> |
break; |
212 |
> |
if (rbf->next != NULL && input_orient*rbf->next->invec[2] < |
213 |
> |
input_orient*invec[2]+FTINY) { |
214 |
> |
for (miga[0] = rbf->ejl; miga[0] != NULL; |
215 |
> |
miga[0] = nextedge(rbf,miga[0])) |
216 |
> |
if (opp_rbf(rbf,miga[0]) == rbf->next) { |
217 |
> |
double nf = 1. - |
218 |
> |
rbf->next->invec[2]*rbf->next->invec[2]; |
219 |
> |
if (nf > FTINY) { /* rotate to match */ |
220 |
> |
nf = sqrt((1.-invec[2]*invec[2])/nf); |
221 |
> |
invec[0] = nf*rbf->next->invec[0]; |
222 |
> |
invec[1] = nf*rbf->next->invec[1]; |
223 |
> |
} |
224 |
> |
return(0); /* rotational symmetry */ |
225 |
|
} |
226 |
+ |
break; |
227 |
|
} |
228 |
< |
return(-1); /* outside range! */ |
228 |
> |
} |
229 |
> |
return(-1); /* outside range! */ |
230 |
|
} |
231 |
|
{ /* else use triangle mesh */ |
232 |
< |
const int sym = use_symmetry(invec); |
233 |
< |
unsigned char floodmap[GRIDRES][(GRIDRES+7)/8]; |
234 |
< |
int pstart[2]; |
235 |
< |
RBFNODE *vother; |
236 |
< |
MIGRATION *ej; |
237 |
< |
int i; |
238 |
< |
|
239 |
< |
pos_from_vec(pstart, invec); |
240 |
< |
memset(floodmap, 0, sizeof(floodmap)); |
241 |
< |
/* call flooding function */ |
242 |
< |
if (!identify_tri(miga, floodmap, pstart[0], pstart[1])) |
243 |
< |
return(-1); /* outside mesh */ |
244 |
< |
if ((miga[0] == NULL) | (miga[2] == NULL)) |
245 |
< |
return(-1); /* should never happen */ |
246 |
< |
if (miga[1] == NULL) |
260 |
< |
return(sym); /* on edge */ |
261 |
< |
/* verify triangle */ |
262 |
< |
if (!order_triangle(miga)) { |
232 |
> |
int sym = use_symmetry(invec); |
233 |
> |
int nedges = 0; |
234 |
> |
MIGRATION *mep; |
235 |
> |
unsigned char *emap; |
236 |
> |
/* clear visitation map */ |
237 |
> |
for (mep = mig_list; mep != NULL; mep = mep->next) |
238 |
> |
++nedges; |
239 |
> |
emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1); |
240 |
> |
if (emap == NULL) { |
241 |
> |
fprintf(stderr, "%s: Out of memory in get_interp()\n", |
242 |
> |
progname); |
243 |
> |
exit(1); |
244 |
> |
} |
245 |
> |
/* identify intersection */ |
246 |
> |
if (!in_mesh(miga, emap, nedges, invec, mig_list)) { |
247 |
|
#ifdef DEBUG |
248 |
< |
fputs("Munged triangle in get_interp()\n", stderr); |
248 |
> |
fprintf(stderr, |
249 |
> |
"Incident angle (%.1f,%.1f) deg. outside mesh\n", |
250 |
> |
get_theta180(invec), get_phi360(invec)); |
251 |
|
#endif |
252 |
< |
vother = NULL; /* find triangle from edge */ |
253 |
< |
for (i = 3; i--; ) { |
254 |
< |
RBFNODE *tpair[2]; |
269 |
< |
if (get_triangles(tpair, miga[i]) && |
270 |
< |
(vother = tpair[ is_rev_tri( |
271 |
< |
miga[i]->rbfv[0]->invec, |
272 |
< |
miga[i]->rbfv[1]->invec, |
273 |
< |
invec) ]) != NULL) |
274 |
< |
break; |
275 |
< |
} |
276 |
< |
if (vother == NULL) { /* couldn't find 3rd vertex */ |
252 |
> |
sym = -1; /* outside mesh */ |
253 |
> |
} else if (miga[1] != NULL && |
254 |
> |
(miga[2] == NULL || !order_triangle(miga))) { |
255 |
|
#ifdef DEBUG |
256 |
< |
fputs("No triangle in get_interp()\n", stderr); |
256 |
> |
fputs("Munged triangle in get_interp()\n", stderr); |
257 |
|
#endif |
258 |
< |
return(-1); |
281 |
< |
} |
282 |
< |
/* reassign other two edges */ |
283 |
< |
for (ej = vother->ejl; ej != NULL; |
284 |
< |
ej = nextedge(vother,ej)) { |
285 |
< |
RBFNODE *vorig = opp_rbf(vother,ej); |
286 |
< |
if (vorig == miga[i]->rbfv[0]) |
287 |
< |
miga[(i+1)%3] = ej; |
288 |
< |
else if (vorig == miga[i]->rbfv[1]) |
289 |
< |
miga[(i+2)%3] = ej; |
290 |
< |
} |
291 |
< |
if (!order_triangle(miga)) { |
292 |
< |
#ifdef DEBUG |
293 |
< |
fputs("Bad triangle in get_interp()\n", stderr); |
294 |
< |
#endif |
295 |
< |
return(-1); |
296 |
< |
} |
258 |
> |
sym = -1; |
259 |
|
} |
260 |
+ |
free(emap); |
261 |
|
return(sym); /* return in standard order */ |
262 |
|
} |
263 |
|
} |
264 |
|
|
265 |
< |
/* Advect and allocate new RBF along edge */ |
303 |
< |
static RBFNODE * |
304 |
< |
e_advect_rbf(const MIGRATION *mig, const FVECT invec) |
305 |
< |
{ |
306 |
< |
RBFNODE *rbf; |
307 |
< |
int n, i, j; |
308 |
< |
double t, full_dist; |
309 |
< |
/* get relative position */ |
310 |
< |
t = acos(DOT(invec, mig->rbfv[0]->invec)); |
311 |
< |
if (t < M_PI/GRIDRES) { /* near first DSF */ |
312 |
< |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
313 |
< |
rbf = (RBFNODE *)malloc(n); |
314 |
< |
if (rbf == NULL) |
315 |
< |
goto memerr; |
316 |
< |
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ |
317 |
< |
return(rbf); |
318 |
< |
} |
319 |
< |
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); |
320 |
< |
if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */ |
321 |
< |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); |
322 |
< |
rbf = (RBFNODE *)malloc(n); |
323 |
< |
if (rbf == NULL) |
324 |
< |
goto memerr; |
325 |
< |
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ |
326 |
< |
return(rbf); |
327 |
< |
} |
328 |
< |
t /= full_dist; |
329 |
< |
n = 0; /* count migrating particles */ |
330 |
< |
for (i = 0; i < mtx_nrows(mig); i++) |
331 |
< |
for (j = 0; j < mtx_ncols(mig); j++) |
332 |
< |
n += (mtx_coef(mig,i,j) > FTINY); |
333 |
< |
#ifdef DEBUG |
334 |
< |
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
335 |
< |
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
336 |
< |
#endif |
337 |
< |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1)); |
338 |
< |
if (rbf == NULL) |
339 |
< |
goto memerr; |
340 |
< |
rbf->next = NULL; rbf->ejl = NULL; |
341 |
< |
VCOPY(rbf->invec, invec); |
342 |
< |
rbf->nrbf = n; |
343 |
< |
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal; |
344 |
< |
n = 0; /* advect RBF lobes */ |
345 |
< |
for (i = 0; i < mtx_nrows(mig); i++) { |
346 |
< |
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i]; |
347 |
< |
const float peak0 = rbf0i->peak; |
348 |
< |
const double rad0 = R2ANG(rbf0i->crad); |
349 |
< |
FVECT v0; |
350 |
< |
float mv; |
351 |
< |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
352 |
< |
for (j = 0; j < mtx_ncols(mig); j++) |
353 |
< |
if ((mv = mtx_coef(mig,i,j)) > FTINY) { |
354 |
< |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
355 |
< |
double rad1 = R2ANG(rbf1j->crad); |
356 |
< |
FVECT v; |
357 |
< |
int pos[2]; |
358 |
< |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; |
359 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + |
360 |
< |
rad1*rad1*t)); |
361 |
< |
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
362 |
< |
geodesic(v, v0, v, t, GEOD_REL); |
363 |
< |
pos_from_vec(pos, v); |
364 |
< |
rbf->rbfa[n].gx = pos[0]; |
365 |
< |
rbf->rbfa[n].gy = pos[1]; |
366 |
< |
++n; |
367 |
< |
} |
368 |
< |
} |
369 |
< |
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */ |
370 |
< |
return(rbf); |
371 |
< |
memerr: |
372 |
< |
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname); |
373 |
< |
exit(1); |
374 |
< |
return(NULL); /* pro forma return */ |
375 |
< |
} |
376 |
< |
|
377 |
< |
/* Partially advect between recorded incident angles and allocate new RBF */ |
265 |
> |
/* Advect between recorded incident angles and allocate new RBF */ |
266 |
|
RBFNODE * |
267 |
< |
advect_rbf(const FVECT invec) |
267 |
> |
advect_rbf(const FVECT invec, int lobe_lim) |
268 |
|
{ |
269 |
+ |
double cthresh = FTINY; |
270 |
|
FVECT sivec; |
271 |
|
MIGRATION *miga[3]; |
272 |
|
RBFNODE *rbf; |
279 |
|
VCOPY(sivec, invec); /* find triangle/edge */ |
280 |
|
sym = get_interp(miga, sivec); |
281 |
|
if (sym < 0) /* can't interpolate? */ |
282 |
< |
return(NULL); |
282 |
> |
return(def_rbf_spec(invec)); |
283 |
|
if (miga[1] == NULL) { /* advect along edge? */ |
284 |
< |
rbf = e_advect_rbf(miga[0], sivec); |
285 |
< |
rev_rbf_symmetry(rbf, sym); |
284 |
> |
rbf = e_advect_rbf(miga[0], sivec, lobe_lim); |
285 |
> |
if (single_plane_incident) |
286 |
> |
rotate_rbf(rbf, invec); |
287 |
> |
else |
288 |
> |
rev_rbf_symmetry(rbf, sym); |
289 |
|
return(rbf); |
290 |
|
} |
291 |
|
#ifdef DEBUG |
292 |
< |
if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | |
293 |
< |
miga[0]->rbfv[1] != miga[1]->rbfv[0] | |
294 |
< |
miga[1]->rbfv[1] != miga[2]->rbfv[1]) { |
292 |
> |
if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) | |
293 |
> |
(miga[0]->rbfv[1] != miga[1]->rbfv[0]) | |
294 |
> |
(miga[1]->rbfv[1] != miga[2]->rbfv[1])) { |
295 |
|
fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); |
296 |
|
exit(1); |
297 |
|
} |
307 |
|
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, |
308 |
|
s, GEOD_REL); |
309 |
|
t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); |
310 |
+ |
tryagain: |
311 |
|
n = 0; /* count migrating particles */ |
312 |
|
for (i = 0; i < mtx_nrows(miga[0]); i++) |
313 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) |
314 |
< |
for (k = (mtx_coef(miga[0],i,j) > FTINY) * |
314 |
> |
for (k = (mtx_coef(miga[0],i,j) > cthresh) * |
315 |
|
mtx_ncols(miga[2]); k--; ) |
316 |
< |
n += (mtx_coef(miga[2],i,k) > FTINY && |
317 |
< |
mtx_coef(miga[1],j,k) > FTINY); |
316 |
> |
n += (mtx_coef(miga[2],i,k) > cthresh || |
317 |
> |
mtx_coef(miga[1],j,k) > cthresh); |
318 |
> |
/* are we over our limit? */ |
319 |
> |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
320 |
> |
cthresh = cthresh*2. + 10.*FTINY; |
321 |
> |
goto tryagain; |
322 |
> |
} |
323 |
|
#ifdef DEBUG |
324 |
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", |
325 |
|
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, |
342 |
|
const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i]; |
343 |
|
const float w0i = rbf0i->peak; |
344 |
|
const double rad0i = R2ANG(rbf0i->crad); |
345 |
+ |
C_COLOR cc0; |
346 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
347 |
+ |
c_decodeChroma(&cc0, rbf0i->chroma); |
348 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) { |
349 |
|
const float ma = mtx_coef(miga[0],i,j); |
350 |
|
const RBFVAL *rbf1j; |
351 |
< |
double rad1j, srad2; |
352 |
< |
if (ma <= FTINY) |
351 |
> |
C_COLOR ccs; |
352 |
> |
double srad2; |
353 |
> |
if (ma <= cthresh) |
354 |
|
continue; |
355 |
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j]; |
356 |
< |
rad1j = R2ANG(rbf1j->crad); |
357 |
< |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; |
356 |
> |
c_decodeChroma(&ccs, rbf1j->chroma); |
357 |
> |
c_cmix(&ccs, 1.-s, &cc0, s, &ccs); |
358 |
> |
srad2 = R2ANG(rbf1j->crad); |
359 |
> |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; |
360 |
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); |
361 |
|
geodesic(v1, v0, v1, s, GEOD_REL); |
362 |
|
for (k = 0; k < mtx_ncols(miga[2]); k++) { |
363 |
|
float mb = mtx_coef(miga[1],j,k); |
364 |
|
float mc = mtx_coef(miga[2],i,k); |
365 |
|
const RBFVAL *rbf2k; |
366 |
< |
double rad2k; |
464 |
< |
FVECT vout; |
366 |
> |
double rad2; |
367 |
|
int pos[2]; |
368 |
< |
if ((mb <= FTINY) | (mc <= FTINY)) |
368 |
> |
if ((mb <= cthresh) & (mc <= cthresh)) |
369 |
|
continue; |
370 |
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k]; |
371 |
< |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); |
372 |
< |
rad2k = R2ANG(rbf2k->crad); |
373 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); |
371 |
> |
rad2 = R2ANG(rbf2k->crad); |
372 |
> |
rad2 = srad2 + t*rad2*rad2; |
373 |
> |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * |
374 |
> |
rad0i*rad0i/rad2; |
375 |
> |
if (rbf_colorimetry == RBCtristimulus) { |
376 |
> |
C_COLOR cres; |
377 |
> |
c_decodeChroma(&cres, rbf2k->chroma); |
378 |
> |
c_cmix(&cres, 1.-t, &ccs, t, &cres); |
379 |
> |
rbf->rbfa[n].chroma = c_encodeChroma(&cres); |
380 |
> |
} else |
381 |
> |
rbf->rbfa[n].chroma = c_dfchroma; |
382 |
> |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
383 |
|
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); |
384 |
< |
geodesic(vout, v1, v2, t, GEOD_REL); |
385 |
< |
pos_from_vec(pos, vout); |
384 |
> |
geodesic(v2, v1, v2, t, GEOD_REL); |
385 |
> |
pos_from_vec(pos, v2); |
386 |
|
rbf->rbfa[n].gx = pos[0]; |
387 |
|
rbf->rbfa[n].gy = pos[1]; |
388 |
|
++n; |