| 202 |
|
{ |
| 203 |
|
miga[0] = miga[1] = miga[2] = NULL; |
| 204 |
|
if (single_plane_incident) { /* isotropic BSDF? */ |
| 205 |
< |
RBFNODE *rbf; /* find edge we're on */ |
| 206 |
< |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 207 |
< |
if (input_orient*rbf->invec[2] < input_orient*invec[2]) |
| 208 |
< |
break; |
| 209 |
< |
if (rbf->next != NULL && |
| 210 |
< |
input_orient*rbf->next->invec[2] < |
| 205 |
> |
RBFNODE *rbf; /* find edge we're on */ |
| 206 |
> |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 207 |
> |
if (input_orient*rbf->invec[2] < input_orient*invec[2]) |
| 208 |
> |
break; |
| 209 |
> |
if (rbf->next != NULL && input_orient*rbf->next->invec[2] < |
| 210 |
|
input_orient*invec[2]) { |
| 211 |
< |
for (miga[0] = rbf->ejl; miga[0] != NULL; |
| 212 |
< |
miga[0] = nextedge(rbf,miga[0])) |
| 213 |
< |
if (opp_rbf(rbf,miga[0]) == rbf->next) { |
| 214 |
< |
double nf = 1.-rbf->invec[2]*rbf->invec[2]; |
| 215 |
< |
if (nf > FTINY) { |
| 216 |
< |
nf = sqrt((1.-invec[2]*invec[2])/nf); |
| 217 |
< |
invec[0] = nf*rbf->invec[0]; |
| 218 |
< |
invec[1] = nf*rbf->invec[1]; |
| 219 |
< |
} |
| 220 |
< |
return(0); |
| 222 |
< |
} |
| 223 |
< |
break; |
| 211 |
> |
for (miga[0] = rbf->ejl; miga[0] != NULL; |
| 212 |
> |
miga[0] = nextedge(rbf,miga[0])) |
| 213 |
> |
if (opp_rbf(rbf,miga[0]) == rbf->next) { |
| 214 |
> |
double nf = 1. - rbf->invec[2]*rbf->invec[2]; |
| 215 |
> |
if (nf > FTINY) { /* rotate to match */ |
| 216 |
> |
nf = sqrt((1.-invec[2]*invec[2])/nf); |
| 217 |
> |
invec[0] = nf*rbf->invec[0]; |
| 218 |
> |
invec[1] = nf*rbf->invec[1]; |
| 219 |
> |
} |
| 220 |
> |
return(0); |
| 221 |
|
} |
| 222 |
+ |
break; |
| 223 |
|
} |
| 224 |
< |
return(-1); /* outside range! */ |
| 224 |
> |
} |
| 225 |
> |
return(-1); /* outside range! */ |
| 226 |
|
} |
| 227 |
|
{ /* else use triangle mesh */ |
| 228 |
|
int sym = use_symmetry(invec); |
| 260 |
|
|
| 261 |
|
/* Advect and allocate new RBF along edge */ |
| 262 |
|
static RBFNODE * |
| 263 |
< |
e_advect_rbf(const MIGRATION *mig, const FVECT invec) |
| 263 |
> |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 264 |
|
{ |
| 265 |
+ |
double cthresh = FTINY; |
| 266 |
|
RBFNODE *rbf; |
| 267 |
|
int n, i, j; |
| 268 |
|
double t, full_dist; |
| 269 |
|
/* get relative position */ |
| 270 |
< |
t = acos(DOT(invec, mig->rbfv[0]->invec)); |
| 270 |
> |
t = Acos(DOT(invec, mig->rbfv[0]->invec)); |
| 271 |
|
if (t < M_PI/grid_res) { /* near first DSF */ |
| 272 |
|
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); |
| 273 |
|
rbf = (RBFNODE *)malloc(n); |
| 287 |
|
rbf->next = NULL; rbf->ejl = NULL; |
| 288 |
|
return(rbf); |
| 289 |
|
} |
| 290 |
< |
t /= full_dist; |
| 290 |
> |
t /= full_dist; |
| 291 |
> |
tryagain: |
| 292 |
|
n = 0; /* count migrating particles */ |
| 293 |
|
for (i = 0; i < mtx_nrows(mig); i++) |
| 294 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 295 |
< |
n += (mtx_coef(mig,i,j) > FTINY); |
| 295 |
> |
n += (mtx_coef(mig,i,j) > cthresh); |
| 296 |
> |
/* are we over our limit? */ |
| 297 |
> |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 298 |
> |
cthresh = cthresh*2. + 10.*FTINY; |
| 299 |
> |
goto tryagain; |
| 300 |
> |
} |
| 301 |
|
#ifdef DEBUG |
| 302 |
|
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
| 303 |
|
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
| 318 |
|
float mv; |
| 319 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 320 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 321 |
< |
if ((mv = mtx_coef(mig,i,j)) > FTINY) { |
| 321 |
> |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 322 |
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 323 |
< |
double rad1 = R2ANG(rbf1j->crad); |
| 323 |
> |
double rad2; |
| 324 |
|
FVECT v; |
| 325 |
|
int pos[2]; |
| 326 |
< |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; |
| 327 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + |
| 328 |
< |
rad1*rad1*t)); |
| 326 |
> |
rad2 = R2ANG(rbf1j->crad); |
| 327 |
> |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 328 |
> |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 329 |
> |
rad0*rad0/rad2; |
| 330 |
> |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 331 |
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 332 |
|
geodesic(v, v0, v, t, GEOD_REL); |
| 333 |
|
pos_from_vec(pos, v); |
| 346 |
|
|
| 347 |
|
/* Partially advect between recorded incident angles and allocate new RBF */ |
| 348 |
|
RBFNODE * |
| 349 |
< |
advect_rbf(const FVECT invec) |
| 349 |
> |
advect_rbf(const FVECT invec, int lobe_lim) |
| 350 |
|
{ |
| 351 |
+ |
double cthresh = FTINY; |
| 352 |
|
FVECT sivec; |
| 353 |
|
MIGRATION *miga[3]; |
| 354 |
|
RBFNODE *rbf; |
| 363 |
|
if (sym < 0) /* can't interpolate? */ |
| 364 |
|
return(NULL); |
| 365 |
|
if (miga[1] == NULL) { /* advect along edge? */ |
| 366 |
< |
rbf = e_advect_rbf(miga[0], sivec); |
| 366 |
> |
rbf = e_advect_rbf(miga[0], sivec, lobe_lim); |
| 367 |
|
if (single_plane_incident) |
| 368 |
|
rotate_rbf(rbf, invec); |
| 369 |
|
else |
| 389 |
|
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, |
| 390 |
|
s, GEOD_REL); |
| 391 |
|
t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); |
| 392 |
+ |
tryagain: |
| 393 |
|
n = 0; /* count migrating particles */ |
| 394 |
|
for (i = 0; i < mtx_nrows(miga[0]); i++) |
| 395 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) |
| 396 |
< |
for (k = (mtx_coef(miga[0],i,j) > FTINY) * |
| 396 |
> |
for (k = (mtx_coef(miga[0],i,j) > cthresh) * |
| 397 |
|
mtx_ncols(miga[2]); k--; ) |
| 398 |
< |
n += (mtx_coef(miga[2],i,k) > FTINY || |
| 399 |
< |
mtx_coef(miga[1],j,k) > FTINY); |
| 398 |
> |
n += (mtx_coef(miga[2],i,k) > cthresh || |
| 399 |
> |
mtx_coef(miga[1],j,k) > cthresh); |
| 400 |
> |
/* are we over our limit? */ |
| 401 |
> |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 402 |
> |
cthresh = cthresh*2. + 10.*FTINY; |
| 403 |
> |
goto tryagain; |
| 404 |
> |
} |
| 405 |
|
#ifdef DEBUG |
| 406 |
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", |
| 407 |
|
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, |
| 428 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) { |
| 429 |
|
const float ma = mtx_coef(miga[0],i,j); |
| 430 |
|
const RBFVAL *rbf1j; |
| 431 |
< |
double rad1j, srad2; |
| 432 |
< |
if (ma <= FTINY) |
| 431 |
> |
double srad2; |
| 432 |
> |
if (ma <= cthresh) |
| 433 |
|
continue; |
| 434 |
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j]; |
| 435 |
< |
rad1j = R2ANG(rbf1j->crad); |
| 436 |
< |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; |
| 435 |
> |
srad2 = R2ANG(rbf1j->crad); |
| 436 |
> |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; |
| 437 |
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); |
| 438 |
|
geodesic(v1, v0, v1, s, GEOD_REL); |
| 439 |
|
for (k = 0; k < mtx_ncols(miga[2]); k++) { |
| 440 |
|
float mb = mtx_coef(miga[1],j,k); |
| 441 |
|
float mc = mtx_coef(miga[2],i,k); |
| 442 |
|
const RBFVAL *rbf2k; |
| 443 |
< |
double rad2k; |
| 443 |
> |
double rad2; |
| 444 |
|
int pos[2]; |
| 445 |
< |
if ((mb <= FTINY) & (mc <= FTINY)) |
| 445 |
> |
if ((mb <= cthresh) & (mc <= cthresh)) |
| 446 |
|
continue; |
| 447 |
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k]; |
| 448 |
< |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); |
| 449 |
< |
rad2k = R2ANG(rbf2k->crad); |
| 450 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); |
| 448 |
> |
rad2 = R2ANG(rbf2k->crad); |
| 449 |
> |
rad2 = srad2 + t*rad2*rad2; |
| 450 |
> |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * |
| 451 |
> |
rad0i*rad0i/rad2; |
| 452 |
> |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 453 |
|
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); |
| 454 |
|
geodesic(v2, v1, v2, t, GEOD_REL); |
| 455 |
|
pos_from_vec(pos, v2); |