--- ray/src/cv/bsdfinterp.c 2012/10/20 07:02:00 2.2 +++ ray/src/cv/bsdfinterp.c 2013/06/29 21:03:25 2.11 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdfinterp.c,v 2.2 2012/10/20 07:02:00 greg Exp $"; +static const char RCSid[] = "$Id: bsdfinterp.c,v 2.11 2013/06/29 21:03:25 greg Exp $"; #endif /* * Interpolate BSDF data from radial basis functions in advection mesh. @@ -13,141 +13,7 @@ static const char RCSid[] = "$Id: bsdfinterp.c,v 2.2 2 #include #include #include "bsdfrep.h" - /* migration edges drawn in raster fashion */ -MIGRATION *mig_grid[GRIDRES][GRIDRES]; -#ifdef DEBUG -#include "random.h" -#include "bmpfile.h" -/* Hash pointer to byte value (must return 0 for NULL) */ -static int -byte_hash(const void *p) -{ - size_t h = (size_t)p; - h ^= (size_t)p >> 8; - h ^= (size_t)p >> 16; - h ^= (size_t)p >> 24; - return(h & 0xff); -} -/* Write out BMP image showing edges */ -static void -write_edge_image(const char *fname) -{ - BMPHeader *hdr = BMPmappedHeader(GRIDRES, GRIDRES, 0, 256); - BMPWriter *wtr; - int i, j; - - fprintf(stderr, "Writing incident mesh drawing to '%s'\n", fname); - hdr->compr = BI_RLE8; - for (i = 256; --i; ) { /* assign random color map */ - hdr->palette[i].r = random() & 0xff; - hdr->palette[i].g = random() & 0xff; - hdr->palette[i].b = random() & 0xff; - /* reject dark colors */ - i += (hdr->palette[i].r + hdr->palette[i].g + - hdr->palette[i].b < 128); - } - hdr->palette[0].r = hdr->palette[0].g = hdr->palette[0].b = 0; - /* open output */ - wtr = BMPopenOutputFile(fname, hdr); - if (wtr == NULL) { - free(hdr); - return; - } - for (i = 0; i < GRIDRES; i++) { /* write scanlines */ - for (j = 0; j < GRIDRES; j++) - wtr->scanline[j] = byte_hash(mig_grid[i][j]); - if (BMPwriteScanline(wtr) != BIR_OK) - break; - } - BMPcloseOutput(wtr); /* close & clean up */ -} -#endif - -/* Draw edge list into mig_grid array */ -void -draw_edges(void) -{ - int nnull = 0, ntot = 0; - MIGRATION *ej; - int p0[2], p1[2]; - - memset(mig_grid, 0, sizeof(mig_grid)); - for (ej = mig_list; ej != NULL; ej = ej->next) { - ++ntot; - pos_from_vec(p0, ej->rbfv[0]->invec); - pos_from_vec(p1, ej->rbfv[1]->invec); - if ((p0[0] == p1[0]) & (p0[1] == p1[1])) { - ++nnull; - mig_grid[p0[0]][p0[1]] = ej; - continue; - } - if (abs(p1[0]-p0[0]) > abs(p1[1]-p0[1])) { - const int xstep = 2*(p1[0] > p0[0]) - 1; - const double ystep = (double)((p1[1]-p0[1])*xstep) / - (double)(p1[0]-p0[0]); - int x; - double y; - for (x = p0[0], y = p0[1]+.5; x != p1[0]; - x += xstep, y += ystep) - mig_grid[x][(int)y] = ej; - mig_grid[x][(int)y] = ej; - } else { - const int ystep = 2*(p1[1] > p0[1]) - 1; - const double xstep = (double)((p1[0]-p0[0])*ystep) / - (double)(p1[1]-p0[1]); - int y; - double x; - for (y = p0[1], x = p0[0]+.5; y != p1[1]; - y += ystep, x += xstep) - mig_grid[(int)x][y] = ej; - mig_grid[(int)x][y] = ej; - } - } - if (nnull) - fprintf(stderr, "Warning: %d of %d edges are null\n", - nnull, ntot); -#ifdef DEBUG - write_edge_image("bsdf_edges.bmp"); -#endif -} - -/* Identify enclosing triangle for this position (flood fill raster check) */ -static int -identify_tri(MIGRATION *miga[3], unsigned char vmap[GRIDRES][(GRIDRES+7)/8], - int px, int py) -{ - const int btest = 1<<(py&07); - - if (vmap[px][py>>3] & btest) /* already visited here? */ - return(1); - /* else mark it */ - vmap[px][py>>3] |= btest; - - if (mig_grid[px][py] != NULL) { /* are we on an edge? */ - int i; - for (i = 0; i < 3; i++) { - if (miga[i] == mig_grid[px][py]) - return(1); - if (miga[i] != NULL) - continue; - miga[i] = mig_grid[px][py]; - return(1); - } - return(0); /* outside triangle! */ - } - /* check neighbors (flood) */ - if (px > 0 && !identify_tri(miga, vmap, px-1, py)) - return(0); - if (px < GRIDRES-1 && !identify_tri(miga, vmap, px+1, py)) - return(0); - if (py > 0 && !identify_tri(miga, vmap, px, py-1)) - return(0); - if (py < GRIDRES-1 && !identify_tri(miga, vmap, px, py+1)) - return(0); - return(1); /* this neighborhood done */ -} - /* Insert vertex in ordered list */ static void insert_vert(RBFNODE **vlist, RBFNODE *v) @@ -185,7 +51,7 @@ order_triangle(MIGRATION *miga[3]) insert_vert(vert, miga[i]->rbfv[1]); } /* should be just 3 vertices */ - if ((vert[3] == NULL) | (vert[4] != NULL)) + if ((vert[2] == NULL) | (vert[3] != NULL)) return(0); /* identify edge 0 */ for (i = 3; i--; ) @@ -219,82 +85,175 @@ order_triangle(MIGRATION *miga[3]) return(1); } +/* Determine if we are close enough to an edge */ +static int +on_edge(const MIGRATION *ej, const FVECT ivec) +{ + double cos_a, cos_b, cos_c, cos_aplusb; + /* use triangle inequality */ + cos_a = DOT(ej->rbfv[0]->invec, ivec); + if (cos_a <= 0) + return(0); + + cos_b = DOT(ej->rbfv[1]->invec, ivec); + if (cos_b <= 0) + return(0); + + cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); + if (cos_aplusb <= 0) + return(0); + + cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec); + + return(cos_c - cos_aplusb < .001); +} + +/* Determine if we are inside the given triangle */ +static int +in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p) +{ + FVECT vc; + int sgn1, sgn2, sgn3; + /* signed volume test */ + VCROSS(vc, v1->invec, v2->invec); + sgn1 = (DOT(p, vc) > 0); + VCROSS(vc, v2->invec, v3->invec); + sgn2 = (DOT(p, vc) > 0); + if (sgn1 != sgn2) + return(0); + VCROSS(vc, v3->invec, v1->invec); + sgn3 = (DOT(p, vc) > 0); + return(sgn2 == sgn3); +} + +/* Test (and set) bitmap for edge */ +static int +check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark) +{ + int ejndx, bit2check; + + if (mig->rbfv[0]->ord > mig->rbfv[1]->ord) + ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord; + else + ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord; + + bit2check = 1<<(ejndx&07); + + if (emap[ejndx>>3] & bit2check) + return(0); + if (mark) + emap[ejndx>>3] |= bit2check; + return(1); +} + +/* Compute intersection with the given position over remaining mesh */ +static int +in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges, + const FVECT ivec, MIGRATION *mig) +{ + RBFNODE *tv[2]; + MIGRATION *sej[2], *dej[2]; + int i; + /* check visitation record */ + if (!check_edge(emap, nedges, mig, 1)) + return(0); + if (on_edge(mig, ivec)) { + miga[0] = mig; /* close enough to edge */ + return(1); + } + if (!get_triangles(tv, mig)) /* do triangles either side? */ + return(0); + for (i = 2; i--; ) { /* identify edges to check */ + MIGRATION *ej; + sej[i] = dej[i] = NULL; + if (tv[i] == NULL) + continue; + for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) { + RBFNODE *rbfop = opp_rbf(tv[i],ej); + if (rbfop == mig->rbfv[0]) { + if (check_edge(emap, nedges, ej, 0)) + sej[i] = ej; + } else if (rbfop == mig->rbfv[1]) { + if (check_edge(emap, nedges, ej, 0)) + dej[i] = ej; + } + } + } + for (i = 2; i--; ) { /* check triangles just once */ + if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i])) + return(1); + if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i])) + return(1); + if ((sej[i] == NULL) | (dej[i] == NULL)) + continue; + if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) { + miga[0] = mig; + miga[1] = sej[i]; + miga[2] = dej[i]; + return(1); + } + } + return(0); /* not near this edge */ +} + /* Find edge(s) for interpolating the given vector, applying symmetry */ int get_interp(MIGRATION *miga[3], FVECT invec) { miga[0] = miga[1] = miga[2] = NULL; if (single_plane_incident) { /* isotropic BSDF? */ - RBFNODE *rbf; /* find edge we're on */ - for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { - if (input_orient*rbf->invec[2] < input_orient*invec[2]) - break; - if (rbf->next != NULL && - input_orient*rbf->next->invec[2] < + RBFNODE *rbf; /* find edge we're on */ + for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { + if (input_orient*rbf->invec[2] < input_orient*invec[2]) + break; + if (rbf->next != NULL && input_orient*rbf->next->invec[2] < input_orient*invec[2]) { - for (miga[0] = rbf->ejl; miga[0] != NULL; - miga[0] = nextedge(rbf,miga[0])) - if (opp_rbf(rbf,miga[0]) == rbf->next) - return(0); - break; + for (miga[0] = rbf->ejl; miga[0] != NULL; + miga[0] = nextedge(rbf,miga[0])) + if (opp_rbf(rbf,miga[0]) == rbf->next) { + double nf = 1. - rbf->invec[2]*rbf->invec[2]; + if (nf > FTINY) { /* rotate to match */ + nf = sqrt((1.-invec[2]*invec[2])/nf); + invec[0] = nf*rbf->invec[0]; + invec[1] = nf*rbf->invec[1]; + } + return(0); } + break; } - return(-1); /* outside range! */ + } + return(-1); /* outside range! */ } { /* else use triangle mesh */ - const int sym = use_symmetry(invec); - unsigned char floodmap[GRIDRES][(GRIDRES+7)/8]; - int pstart[2]; - RBFNODE *vother; - MIGRATION *ej; - int i; - - pos_from_vec(pstart, invec); - memset(floodmap, 0, sizeof(floodmap)); - /* call flooding function */ - if (!identify_tri(miga, floodmap, pstart[0], pstart[1])) - return(-1); /* outside mesh */ - if ((miga[0] == NULL) | (miga[2] == NULL)) - return(-1); /* should never happen */ - if (miga[1] == NULL) - return(sym); /* on edge */ - /* verify triangle */ - if (!order_triangle(miga)) { + int sym = use_symmetry(invec); + int nedges = 0; + MIGRATION *mep; + unsigned char *emap; + /* clear visitation map */ + for (mep = mig_list; mep != NULL; mep = mep->next) + ++nedges; + emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1); + if (emap == NULL) { + fprintf(stderr, "%s: Out of memory in get_interp()\n", + progname); + exit(1); + } + /* identify intersection */ + if (!in_mesh(miga, emap, nedges, invec, mig_list)) { #ifdef DEBUG - fputs("Munged triangle in get_interp()\n", stderr); + fprintf(stderr, + "Incident angle (%.1f,%.1f) deg. outside mesh\n", + get_theta180(invec), get_phi360(invec)); #endif - vother = NULL; /* find triangle from edge */ - for (i = 3; i--; ) { - RBFNODE *tpair[2]; - if (get_triangles(tpair, miga[i]) && - (vother = tpair[ is_rev_tri( - miga[i]->rbfv[0]->invec, - miga[i]->rbfv[1]->invec, - invec) ]) != NULL) - break; - } - if (vother == NULL) { /* couldn't find 3rd vertex */ + sym = -1; /* outside mesh */ + } else if (miga[1] != NULL && + (miga[2] == NULL || !order_triangle(miga))) { #ifdef DEBUG - fputs("No triangle in get_interp()\n", stderr); + fputs("Munged triangle in get_interp()\n", stderr); #endif - return(-1); - } - /* reassign other two edges */ - for (ej = vother->ejl; ej != NULL; - ej = nextedge(vother,ej)) { - RBFNODE *vorig = opp_rbf(vother,ej); - if (vorig == miga[i]->rbfv[0]) - miga[(i+1)%3] = ej; - else if (vorig == miga[i]->rbfv[1]) - miga[(i+2)%3] = ej; - } - if (!order_triangle(miga)) { -#ifdef DEBUG - fputs("Bad triangle in get_interp()\n", stderr); -#endif - return(-1); - } + sym = -1; } + free(emap); return(sym); /* return in standard order */ } } @@ -307,22 +266,24 @@ e_advect_rbf(const MIGRATION *mig, const FVECT invec) int n, i, j; double t, full_dist; /* get relative position */ - t = acos(DOT(invec, mig->rbfv[0]->invec)); - if (t < M_PI/GRIDRES) { /* near first DSF */ + t = Acos(DOT(invec, mig->rbfv[0]->invec)); + if (t < M_PI/grid_res) { /* near first DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[0], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; return(rbf); } full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec)); - if (t > full_dist-M_PI/GRIDRES) { /* near second DSF */ + if (t > full_dist-M_PI/grid_res) { /* near second DSF */ n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1); rbf = (RBFNODE *)malloc(n); if (rbf == NULL) goto memerr; memcpy(rbf, mig->rbfv[1], n); /* just duplicate */ + rbf->next = NULL; rbf->ejl = NULL; return(rbf); } t /= full_dist; @@ -393,7 +354,10 @@ advect_rbf(const FVECT invec) return(NULL); if (miga[1] == NULL) { /* advect along edge? */ rbf = e_advect_rbf(miga[0], sivec); - rev_rbf_symmetry(rbf, sym); + if (single_plane_incident) + rotate_rbf(rbf, invec); + else + rev_rbf_symmetry(rbf, sym); return(rbf); } #ifdef DEBUG @@ -420,7 +384,7 @@ advect_rbf(const FVECT invec) for (j = 0; j < mtx_ncols(miga[0]); j++) for (k = (mtx_coef(miga[0],i,j) > FTINY) * mtx_ncols(miga[2]); k--; ) - n += (mtx_coef(miga[2],i,k) > FTINY && + n += (mtx_coef(miga[2],i,k) > FTINY || mtx_coef(miga[1],j,k) > FTINY); #ifdef DEBUG fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", @@ -461,17 +425,16 @@ advect_rbf(const FVECT invec) float mc = mtx_coef(miga[2],i,k); const RBFVAL *rbf2k; double rad2k; - FVECT vout; int pos[2]; - if ((mb <= FTINY) | (mc <= FTINY)) + if ((mb <= FTINY) & (mc <= FTINY)) continue; rbf2k = &miga[2]->rbfv[1]->rbfa[k]; rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); rad2k = R2ANG(rbf2k->crad); rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); - geodesic(vout, v1, v2, t, GEOD_REL); - pos_from_vec(pos, vout); + geodesic(v2, v1, v2, t, GEOD_REL); + pos_from_vec(pos, v2); rbf->rbfa[n].gx = pos[0]; rbf->rbfa[n].gy = pos[1]; ++n;