| 94 |
|
cos_a = DOT(ej->rbfv[0]->invec, ivec); |
| 95 |
|
if (cos_a <= 0) |
| 96 |
|
return(0); |
| 97 |
+ |
if (cos_a >= 1.) /* handles rounding error */ |
| 98 |
+ |
return(1); |
| 99 |
|
|
| 100 |
|
cos_b = DOT(ej->rbfv[1]->invec, ivec); |
| 101 |
|
if (cos_b <= 0) |
| 102 |
|
return(0); |
| 103 |
+ |
if (cos_b >= 1.) |
| 104 |
+ |
return(1); |
| 105 |
|
|
| 106 |
|
cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b)); |
| 107 |
|
if (cos_aplusb <= 0) |
| 208 |
|
if (single_plane_incident) { /* isotropic BSDF? */ |
| 209 |
|
RBFNODE *rbf; /* find edge we're on */ |
| 210 |
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) { |
| 211 |
< |
if (input_orient*rbf->invec[2] < input_orient*invec[2]) |
| 211 |
> |
if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY) |
| 212 |
|
break; |
| 213 |
|
if (rbf->next != NULL && input_orient*rbf->next->invec[2] < |
| 214 |
< |
input_orient*invec[2]) { |
| 214 |
> |
input_orient*invec[2]+FTINY) { |
| 215 |
|
for (miga[0] = rbf->ejl; miga[0] != NULL; |
| 216 |
|
miga[0] = nextedge(rbf,miga[0])) |
| 217 |
|
if (opp_rbf(rbf,miga[0]) == rbf->next) { |
| 264 |
|
|
| 265 |
|
/* Advect and allocate new RBF along edge */ |
| 266 |
|
static RBFNODE * |
| 267 |
< |
e_advect_rbf(const MIGRATION *mig, const FVECT invec) |
| 267 |
> |
e_advect_rbf(const MIGRATION *mig, const FVECT invec, int lobe_lim) |
| 268 |
|
{ |
| 269 |
+ |
double cthresh = FTINY; |
| 270 |
|
RBFNODE *rbf; |
| 271 |
|
int n, i, j; |
| 272 |
|
double t, full_dist; |
| 291 |
|
rbf->next = NULL; rbf->ejl = NULL; |
| 292 |
|
return(rbf); |
| 293 |
|
} |
| 294 |
< |
t /= full_dist; |
| 294 |
> |
t /= full_dist; |
| 295 |
> |
tryagain: |
| 296 |
|
n = 0; /* count migrating particles */ |
| 297 |
|
for (i = 0; i < mtx_nrows(mig); i++) |
| 298 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 299 |
< |
n += (mtx_coef(mig,i,j) > FTINY); |
| 299 |
> |
n += (mtx_coef(mig,i,j) > cthresh); |
| 300 |
> |
/* are we over our limit? */ |
| 301 |
> |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 302 |
> |
cthresh = cthresh*2. + 10.*FTINY; |
| 303 |
> |
goto tryagain; |
| 304 |
> |
} |
| 305 |
|
#ifdef DEBUG |
| 306 |
|
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n", |
| 307 |
|
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n); |
| 322 |
|
float mv; |
| 323 |
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy); |
| 324 |
|
for (j = 0; j < mtx_ncols(mig); j++) |
| 325 |
< |
if ((mv = mtx_coef(mig,i,j)) > FTINY) { |
| 325 |
> |
if ((mv = mtx_coef(mig,i,j)) > cthresh) { |
| 326 |
|
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j]; |
| 327 |
< |
double rad1 = R2ANG(rbf1j->crad); |
| 327 |
> |
double rad2; |
| 328 |
|
FVECT v; |
| 329 |
|
int pos[2]; |
| 330 |
< |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal; |
| 331 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) + |
| 332 |
< |
rad1*rad1*t)); |
| 330 |
> |
rad2 = R2ANG(rbf1j->crad); |
| 331 |
> |
rad2 = rad0*rad0*(1.-t) + rad2*rad2*t; |
| 332 |
> |
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal * |
| 333 |
> |
rad0*rad0/rad2; |
| 334 |
> |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 335 |
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy); |
| 336 |
|
geodesic(v, v0, v, t, GEOD_REL); |
| 337 |
|
pos_from_vec(pos, v); |
| 348 |
|
return(NULL); /* pro forma return */ |
| 349 |
|
} |
| 350 |
|
|
| 351 |
< |
/* Partially advect between recorded incident angles and allocate new RBF */ |
| 351 |
> |
/* Advect between recorded incident angles and allocate new RBF */ |
| 352 |
|
RBFNODE * |
| 353 |
< |
advect_rbf(const FVECT invec) |
| 353 |
> |
advect_rbf(const FVECT invec, int lobe_lim) |
| 354 |
|
{ |
| 355 |
+ |
double cthresh = FTINY; |
| 356 |
|
FVECT sivec; |
| 357 |
|
MIGRATION *miga[3]; |
| 358 |
|
RBFNODE *rbf; |
| 367 |
|
if (sym < 0) /* can't interpolate? */ |
| 368 |
|
return(NULL); |
| 369 |
|
if (miga[1] == NULL) { /* advect along edge? */ |
| 370 |
< |
rbf = e_advect_rbf(miga[0], sivec); |
| 370 |
> |
rbf = e_advect_rbf(miga[0], sivec, lobe_lim); |
| 371 |
|
if (single_plane_incident) |
| 372 |
|
rotate_rbf(rbf, invec); |
| 373 |
|
else |
| 375 |
|
return(rbf); |
| 376 |
|
} |
| 377 |
|
#ifdef DEBUG |
| 378 |
< |
if (miga[0]->rbfv[0] != miga[2]->rbfv[0] | |
| 379 |
< |
miga[0]->rbfv[1] != miga[1]->rbfv[0] | |
| 380 |
< |
miga[1]->rbfv[1] != miga[2]->rbfv[1]) { |
| 378 |
> |
if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) | |
| 379 |
> |
(miga[0]->rbfv[1] != miga[1]->rbfv[0]) | |
| 380 |
> |
(miga[1]->rbfv[1] != miga[2]->rbfv[1])) { |
| 381 |
|
fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname); |
| 382 |
|
exit(1); |
| 383 |
|
} |
| 393 |
|
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec, |
| 394 |
|
s, GEOD_REL); |
| 395 |
|
t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec)); |
| 396 |
+ |
tryagain: |
| 397 |
|
n = 0; /* count migrating particles */ |
| 398 |
|
for (i = 0; i < mtx_nrows(miga[0]); i++) |
| 399 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) |
| 400 |
< |
for (k = (mtx_coef(miga[0],i,j) > FTINY) * |
| 400 |
> |
for (k = (mtx_coef(miga[0],i,j) > cthresh) * |
| 401 |
|
mtx_ncols(miga[2]); k--; ) |
| 402 |
< |
n += (mtx_coef(miga[2],i,k) > FTINY || |
| 403 |
< |
mtx_coef(miga[1],j,k) > FTINY); |
| 402 |
> |
n += (mtx_coef(miga[2],i,k) > cthresh || |
| 403 |
> |
mtx_coef(miga[1],j,k) > cthresh); |
| 404 |
> |
/* are we over our limit? */ |
| 405 |
> |
if ((lobe_lim > 0) & (n > lobe_lim)) { |
| 406 |
> |
cthresh = cthresh*2. + 10.*FTINY; |
| 407 |
> |
goto tryagain; |
| 408 |
> |
} |
| 409 |
|
#ifdef DEBUG |
| 410 |
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n", |
| 411 |
|
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf, |
| 432 |
|
for (j = 0; j < mtx_ncols(miga[0]); j++) { |
| 433 |
|
const float ma = mtx_coef(miga[0],i,j); |
| 434 |
|
const RBFVAL *rbf1j; |
| 435 |
< |
double rad1j, srad2; |
| 436 |
< |
if (ma <= FTINY) |
| 435 |
> |
double srad2; |
| 436 |
> |
if (ma <= cthresh) |
| 437 |
|
continue; |
| 438 |
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j]; |
| 439 |
< |
rad1j = R2ANG(rbf1j->crad); |
| 440 |
< |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j; |
| 439 |
> |
srad2 = R2ANG(rbf1j->crad); |
| 440 |
> |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2; |
| 441 |
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy); |
| 442 |
|
geodesic(v1, v0, v1, s, GEOD_REL); |
| 443 |
|
for (k = 0; k < mtx_ncols(miga[2]); k++) { |
| 444 |
|
float mb = mtx_coef(miga[1],j,k); |
| 445 |
|
float mc = mtx_coef(miga[2],i,k); |
| 446 |
|
const RBFVAL *rbf2k; |
| 447 |
< |
double rad2k; |
| 447 |
> |
double rad2; |
| 448 |
|
int pos[2]; |
| 449 |
< |
if ((mb <= FTINY) & (mc <= FTINY)) |
| 449 |
> |
if ((mb <= cthresh) & (mc <= cthresh)) |
| 450 |
|
continue; |
| 451 |
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k]; |
| 452 |
< |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact); |
| 453 |
< |
rad2k = R2ANG(rbf2k->crad); |
| 454 |
< |
rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k)); |
| 452 |
> |
rad2 = R2ANG(rbf2k->crad); |
| 453 |
> |
rad2 = srad2 + t*rad2*rad2; |
| 454 |
> |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) * |
| 455 |
> |
rad0i*rad0i/rad2; |
| 456 |
> |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2)); |
| 457 |
|
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy); |
| 458 |
|
geodesic(v2, v1, v2, t, GEOD_REL); |
| 459 |
|
pos_from_vec(pos, v2); |