| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: bsdfinterp.c,v 2.21 2016/01/29 16:21:55 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Interpolate BSDF data from radial basis functions in advection mesh.
|
| 6 |
*
|
| 7 |
* G. Ward
|
| 8 |
*/
|
| 9 |
|
| 10 |
#define _USE_MATH_DEFINES
|
| 11 |
#include <stdio.h>
|
| 12 |
#include <stdlib.h>
|
| 13 |
#include <string.h>
|
| 14 |
#include <math.h>
|
| 15 |
#include "bsdfrep.h"
|
| 16 |
|
| 17 |
/* Insert vertex in ordered list */
|
| 18 |
static void
|
| 19 |
insert_vert(RBFNODE **vlist, RBFNODE *v)
|
| 20 |
{
|
| 21 |
int i, j;
|
| 22 |
|
| 23 |
for (i = 0; vlist[i] != NULL; i++) {
|
| 24 |
if (v == vlist[i])
|
| 25 |
return;
|
| 26 |
if (v->ord < vlist[i]->ord)
|
| 27 |
break;
|
| 28 |
}
|
| 29 |
for (j = i; vlist[j] != NULL; j++)
|
| 30 |
;
|
| 31 |
while (j > i) {
|
| 32 |
vlist[j] = vlist[j-1];
|
| 33 |
--j;
|
| 34 |
}
|
| 35 |
vlist[i] = v;
|
| 36 |
}
|
| 37 |
|
| 38 |
/* Sort triangle edges in standard order */
|
| 39 |
static int
|
| 40 |
order_triangle(MIGRATION *miga[3])
|
| 41 |
{
|
| 42 |
RBFNODE *vert[7];
|
| 43 |
MIGRATION *ord[3];
|
| 44 |
int i;
|
| 45 |
/* order vertices, first */
|
| 46 |
memset(vert, 0, sizeof(vert));
|
| 47 |
for (i = 3; i--; ) {
|
| 48 |
if (miga[i] == NULL)
|
| 49 |
return(0);
|
| 50 |
insert_vert(vert, miga[i]->rbfv[0]);
|
| 51 |
insert_vert(vert, miga[i]->rbfv[1]);
|
| 52 |
}
|
| 53 |
/* should be just 3 vertices */
|
| 54 |
if ((vert[2] == NULL) | (vert[3] != NULL))
|
| 55 |
return(0);
|
| 56 |
/* identify edge 0 */
|
| 57 |
for (i = 3; i--; )
|
| 58 |
if (miga[i]->rbfv[0] == vert[0] &&
|
| 59 |
miga[i]->rbfv[1] == vert[1]) {
|
| 60 |
ord[0] = miga[i];
|
| 61 |
break;
|
| 62 |
}
|
| 63 |
if (i < 0)
|
| 64 |
return(0);
|
| 65 |
/* identify edge 1 */
|
| 66 |
for (i = 3; i--; )
|
| 67 |
if (miga[i]->rbfv[0] == vert[1] &&
|
| 68 |
miga[i]->rbfv[1] == vert[2]) {
|
| 69 |
ord[1] = miga[i];
|
| 70 |
break;
|
| 71 |
}
|
| 72 |
if (i < 0)
|
| 73 |
return(0);
|
| 74 |
/* identify edge 2 */
|
| 75 |
for (i = 3; i--; )
|
| 76 |
if (miga[i]->rbfv[0] == vert[0] &&
|
| 77 |
miga[i]->rbfv[1] == vert[2]) {
|
| 78 |
ord[2] = miga[i];
|
| 79 |
break;
|
| 80 |
}
|
| 81 |
if (i < 0)
|
| 82 |
return(0);
|
| 83 |
/* reassign order */
|
| 84 |
miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
|
| 85 |
return(1);
|
| 86 |
}
|
| 87 |
|
| 88 |
/* Determine if we are close enough to an edge */
|
| 89 |
static int
|
| 90 |
on_edge(const MIGRATION *ej, const FVECT ivec)
|
| 91 |
{
|
| 92 |
double cos_a, cos_b, cos_c, cos_aplusb;
|
| 93 |
/* use triangle inequality */
|
| 94 |
cos_a = DOT(ej->rbfv[0]->invec, ivec);
|
| 95 |
if (cos_a <= 0)
|
| 96 |
return(0);
|
| 97 |
if (cos_a >= 1.) /* handles rounding error */
|
| 98 |
return(1);
|
| 99 |
|
| 100 |
cos_b = DOT(ej->rbfv[1]->invec, ivec);
|
| 101 |
if (cos_b <= 0)
|
| 102 |
return(0);
|
| 103 |
if (cos_b >= 1.)
|
| 104 |
return(1);
|
| 105 |
|
| 106 |
cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b));
|
| 107 |
if (cos_aplusb <= 0)
|
| 108 |
return(0);
|
| 109 |
|
| 110 |
cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec);
|
| 111 |
return(cos_c - cos_aplusb < .0002);
|
| 112 |
}
|
| 113 |
|
| 114 |
/* Determine if we are inside the given triangle */
|
| 115 |
static int
|
| 116 |
in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p)
|
| 117 |
{
|
| 118 |
FVECT vc;
|
| 119 |
int sgn1, sgn2, sgn3;
|
| 120 |
/* signed volume test */
|
| 121 |
VCROSS(vc, v1->invec, v2->invec);
|
| 122 |
sgn1 = (DOT(p, vc) > 0);
|
| 123 |
VCROSS(vc, v2->invec, v3->invec);
|
| 124 |
sgn2 = (DOT(p, vc) > 0);
|
| 125 |
if (sgn1 != sgn2)
|
| 126 |
return(0);
|
| 127 |
VCROSS(vc, v3->invec, v1->invec);
|
| 128 |
sgn3 = (DOT(p, vc) > 0);
|
| 129 |
return(sgn2 == sgn3);
|
| 130 |
}
|
| 131 |
|
| 132 |
/* Test (and set) bitmap for edge */
|
| 133 |
static int
|
| 134 |
check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark)
|
| 135 |
{
|
| 136 |
int ejndx, bit2check;
|
| 137 |
|
| 138 |
if (mig->rbfv[0]->ord > mig->rbfv[1]->ord)
|
| 139 |
ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord;
|
| 140 |
else
|
| 141 |
ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord;
|
| 142 |
|
| 143 |
bit2check = 1<<(ejndx&07);
|
| 144 |
|
| 145 |
if (emap[ejndx>>3] & bit2check)
|
| 146 |
return(0);
|
| 147 |
if (mark)
|
| 148 |
emap[ejndx>>3] |= bit2check;
|
| 149 |
return(1);
|
| 150 |
}
|
| 151 |
|
| 152 |
/* Compute intersection with the given position over remaining mesh */
|
| 153 |
static int
|
| 154 |
in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges,
|
| 155 |
const FVECT ivec, MIGRATION *mig)
|
| 156 |
{
|
| 157 |
RBFNODE *tv[2];
|
| 158 |
MIGRATION *sej[2], *dej[2];
|
| 159 |
int i;
|
| 160 |
/* check visitation record */
|
| 161 |
if (!check_edge(emap, nedges, mig, 1))
|
| 162 |
return(0);
|
| 163 |
if (on_edge(mig, ivec)) {
|
| 164 |
miga[0] = mig; /* close enough to edge */
|
| 165 |
return(1);
|
| 166 |
}
|
| 167 |
if (!get_triangles(tv, mig)) /* do triangles either side? */
|
| 168 |
return(0);
|
| 169 |
for (i = 2; i--; ) { /* identify edges to check */
|
| 170 |
MIGRATION *ej;
|
| 171 |
sej[i] = dej[i] = NULL;
|
| 172 |
if (tv[i] == NULL)
|
| 173 |
continue;
|
| 174 |
for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) {
|
| 175 |
RBFNODE *rbfop = opp_rbf(tv[i],ej);
|
| 176 |
if (rbfop == mig->rbfv[0]) {
|
| 177 |
if (check_edge(emap, nedges, ej, 0))
|
| 178 |
sej[i] = ej;
|
| 179 |
} else if (rbfop == mig->rbfv[1]) {
|
| 180 |
if (check_edge(emap, nedges, ej, 0))
|
| 181 |
dej[i] = ej;
|
| 182 |
}
|
| 183 |
}
|
| 184 |
}
|
| 185 |
for (i = 2; i--; ) { /* check triangles just once */
|
| 186 |
if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i]))
|
| 187 |
return(1);
|
| 188 |
if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i]))
|
| 189 |
return(1);
|
| 190 |
if ((sej[i] == NULL) | (dej[i] == NULL))
|
| 191 |
continue;
|
| 192 |
if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) {
|
| 193 |
miga[0] = mig;
|
| 194 |
miga[1] = sej[i];
|
| 195 |
miga[2] = dej[i];
|
| 196 |
return(1);
|
| 197 |
}
|
| 198 |
}
|
| 199 |
return(0); /* not near this edge */
|
| 200 |
}
|
| 201 |
|
| 202 |
/* Find edge(s) for interpolating the given vector, applying symmetry */
|
| 203 |
int
|
| 204 |
get_interp(MIGRATION *miga[3], FVECT invec)
|
| 205 |
{
|
| 206 |
miga[0] = miga[1] = miga[2] = NULL;
|
| 207 |
if (single_plane_incident) { /* isotropic BSDF? */
|
| 208 |
RBFNODE *rbf; /* find edge we're on */
|
| 209 |
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
|
| 210 |
if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY)
|
| 211 |
break;
|
| 212 |
if (rbf->next != NULL && input_orient*rbf->next->invec[2] <
|
| 213 |
input_orient*invec[2]+FTINY) {
|
| 214 |
for (miga[0] = rbf->ejl; miga[0] != NULL;
|
| 215 |
miga[0] = nextedge(rbf,miga[0]))
|
| 216 |
if (opp_rbf(rbf,miga[0]) == rbf->next) {
|
| 217 |
double nf = 1. -
|
| 218 |
rbf->next->invec[2]*rbf->next->invec[2];
|
| 219 |
if (nf > FTINY) { /* rotate to match */
|
| 220 |
nf = sqrt((1.-invec[2]*invec[2])/nf);
|
| 221 |
invec[0] = nf*rbf->next->invec[0];
|
| 222 |
invec[1] = nf*rbf->next->invec[1];
|
| 223 |
}
|
| 224 |
return(0); /* rotational symmetry */
|
| 225 |
}
|
| 226 |
break;
|
| 227 |
}
|
| 228 |
}
|
| 229 |
return(-1); /* outside range! */
|
| 230 |
}
|
| 231 |
{ /* else use triangle mesh */
|
| 232 |
int sym = use_symmetry(invec);
|
| 233 |
int nedges = 0;
|
| 234 |
MIGRATION *mep;
|
| 235 |
unsigned char *emap;
|
| 236 |
/* clear visitation map */
|
| 237 |
for (mep = mig_list; mep != NULL; mep = mep->next)
|
| 238 |
++nedges;
|
| 239 |
emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1);
|
| 240 |
if (emap == NULL) {
|
| 241 |
fprintf(stderr, "%s: Out of memory in get_interp()\n",
|
| 242 |
progname);
|
| 243 |
exit(1);
|
| 244 |
}
|
| 245 |
/* identify intersection */
|
| 246 |
if (!in_mesh(miga, emap, nedges, invec, mig_list)) {
|
| 247 |
#ifdef DEBUG
|
| 248 |
fprintf(stderr,
|
| 249 |
"Incident angle (%.1f,%.1f) deg. outside mesh\n",
|
| 250 |
get_theta180(invec), get_phi360(invec));
|
| 251 |
#endif
|
| 252 |
sym = -1; /* outside mesh */
|
| 253 |
} else if (miga[1] != NULL &&
|
| 254 |
(miga[2] == NULL || !order_triangle(miga))) {
|
| 255 |
#ifdef DEBUG
|
| 256 |
fputs("Munged triangle in get_interp()\n", stderr);
|
| 257 |
#endif
|
| 258 |
sym = -1;
|
| 259 |
}
|
| 260 |
free(emap);
|
| 261 |
return(sym); /* return in standard order */
|
| 262 |
}
|
| 263 |
}
|
| 264 |
|
| 265 |
/* Advect between recorded incident angles and allocate new RBF */
|
| 266 |
RBFNODE *
|
| 267 |
advect_rbf(const FVECT invec, int lobe_lim)
|
| 268 |
{
|
| 269 |
double cthresh = FTINY;
|
| 270 |
FVECT sivec;
|
| 271 |
MIGRATION *miga[3];
|
| 272 |
RBFNODE *rbf;
|
| 273 |
int sym;
|
| 274 |
float mbfact, mcfact;
|
| 275 |
int n, i, j, k;
|
| 276 |
FVECT v0, v1, v2;
|
| 277 |
double s, t;
|
| 278 |
|
| 279 |
VCOPY(sivec, invec); /* find triangle/edge */
|
| 280 |
sym = get_interp(miga, sivec);
|
| 281 |
if (sym < 0) /* can't interpolate? */
|
| 282 |
return(def_rbf_spec(invec));
|
| 283 |
if (miga[1] == NULL) { /* advect along edge? */
|
| 284 |
rbf = e_advect_rbf(miga[0], sivec, lobe_lim);
|
| 285 |
if (single_plane_incident)
|
| 286 |
rotate_rbf(rbf, invec);
|
| 287 |
else
|
| 288 |
rev_rbf_symmetry(rbf, sym);
|
| 289 |
return(rbf);
|
| 290 |
}
|
| 291 |
#ifdef DEBUG
|
| 292 |
if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) |
|
| 293 |
(miga[0]->rbfv[1] != miga[1]->rbfv[0]) |
|
| 294 |
(miga[1]->rbfv[1] != miga[2]->rbfv[1])) {
|
| 295 |
fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname);
|
| 296 |
exit(1);
|
| 297 |
}
|
| 298 |
#endif
|
| 299 |
/* figure out position */
|
| 300 |
fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
|
| 301 |
normalize(v0);
|
| 302 |
fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
|
| 303 |
normalize(v2);
|
| 304 |
fcross(v1, sivec, miga[1]->rbfv[1]->invec);
|
| 305 |
normalize(v1);
|
| 306 |
s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
|
| 307 |
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
|
| 308 |
s, GEOD_REL);
|
| 309 |
t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
|
| 310 |
tryagain:
|
| 311 |
n = 0; /* count migrating particles */
|
| 312 |
for (i = 0; i < mtx_nrows(miga[0]); i++)
|
| 313 |
for (j = 0; j < mtx_ncols(miga[0]); j++)
|
| 314 |
for (k = (mtx_coef(miga[0],i,j) > cthresh) *
|
| 315 |
mtx_ncols(miga[2]); k--; )
|
| 316 |
n += (mtx_coef(miga[2],i,k) > cthresh ||
|
| 317 |
mtx_coef(miga[1],j,k) > cthresh);
|
| 318 |
/* are we over our limit? */
|
| 319 |
if ((lobe_lim > 0) & (n > lobe_lim)) {
|
| 320 |
cthresh = cthresh*2. + 10.*FTINY;
|
| 321 |
goto tryagain;
|
| 322 |
}
|
| 323 |
#ifdef DEBUG
|
| 324 |
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
|
| 325 |
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
|
| 326 |
miga[2]->rbfv[1]->nrbf, n);
|
| 327 |
#endif
|
| 328 |
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
|
| 329 |
if (rbf == NULL) {
|
| 330 |
fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname);
|
| 331 |
exit(1);
|
| 332 |
}
|
| 333 |
rbf->next = NULL; rbf->ejl = NULL;
|
| 334 |
VCOPY(rbf->invec, sivec);
|
| 335 |
rbf->nrbf = n;
|
| 336 |
n = 0; /* compute RBF lobes */
|
| 337 |
mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
|
| 338 |
(1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
|
| 339 |
mcfact = (1.-s) *
|
| 340 |
(1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
|
| 341 |
for (i = 0; i < mtx_nrows(miga[0]); i++) {
|
| 342 |
const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
|
| 343 |
const float w0i = rbf0i->peak;
|
| 344 |
const double rad0i = R2ANG(rbf0i->crad);
|
| 345 |
C_COLOR cc0;
|
| 346 |
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
|
| 347 |
c_decodeChroma(&cc0, rbf0i->chroma);
|
| 348 |
for (j = 0; j < mtx_ncols(miga[0]); j++) {
|
| 349 |
const float ma = mtx_coef(miga[0],i,j);
|
| 350 |
const RBFVAL *rbf1j;
|
| 351 |
C_COLOR ccs;
|
| 352 |
double srad2;
|
| 353 |
if (ma <= cthresh)
|
| 354 |
continue;
|
| 355 |
rbf1j = &miga[0]->rbfv[1]->rbfa[j];
|
| 356 |
c_decodeChroma(&ccs, rbf1j->chroma);
|
| 357 |
c_cmix(&ccs, 1.-s, &cc0, s, &ccs);
|
| 358 |
srad2 = R2ANG(rbf1j->crad);
|
| 359 |
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2;
|
| 360 |
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
|
| 361 |
geodesic(v1, v0, v1, s, GEOD_REL);
|
| 362 |
for (k = 0; k < mtx_ncols(miga[2]); k++) {
|
| 363 |
float mb = mtx_coef(miga[1],j,k);
|
| 364 |
float mc = mtx_coef(miga[2],i,k);
|
| 365 |
const RBFVAL *rbf2k;
|
| 366 |
double rad2;
|
| 367 |
int pos[2];
|
| 368 |
if ((mb <= cthresh) & (mc <= cthresh))
|
| 369 |
continue;
|
| 370 |
rbf2k = &miga[2]->rbfv[1]->rbfa[k];
|
| 371 |
rad2 = R2ANG(rbf2k->crad);
|
| 372 |
rad2 = srad2 + t*rad2*rad2;
|
| 373 |
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) *
|
| 374 |
rad0i*rad0i/rad2;
|
| 375 |
if (rbf_colorimetry == RBCtristimulus) {
|
| 376 |
C_COLOR cres;
|
| 377 |
c_decodeChroma(&cres, rbf2k->chroma);
|
| 378 |
c_cmix(&cres, 1.-t, &ccs, t, &cres);
|
| 379 |
rbf->rbfa[n].chroma = c_encodeChroma(&cres);
|
| 380 |
} else
|
| 381 |
rbf->rbfa[n].chroma = c_dfchroma;
|
| 382 |
rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
|
| 383 |
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
|
| 384 |
geodesic(v2, v1, v2, t, GEOD_REL);
|
| 385 |
pos_from_vec(pos, v2);
|
| 386 |
rbf->rbfa[n].gx = pos[0];
|
| 387 |
rbf->rbfa[n].gy = pos[1];
|
| 388 |
++n;
|
| 389 |
}
|
| 390 |
}
|
| 391 |
}
|
| 392 |
rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
|
| 393 |
rev_rbf_symmetry(rbf, sym);
|
| 394 |
return(rbf);
|
| 395 |
}
|