| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.8 |
static const char RCSid[] = "$Id: bsdfinterp.c,v 2.7 2012/11/26 07:02:20 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Interpolate BSDF data from radial basis functions in advection mesh.
|
| 6 |
|
|
*
|
| 7 |
|
|
* G. Ward
|
| 8 |
|
|
*/
|
| 9 |
|
|
|
| 10 |
|
|
#define _USE_MATH_DEFINES
|
| 11 |
|
|
#include <stdio.h>
|
| 12 |
|
|
#include <stdlib.h>
|
| 13 |
|
|
#include <string.h>
|
| 14 |
|
|
#include <math.h>
|
| 15 |
|
|
#include "bsdfrep.h"
|
| 16 |
|
|
|
| 17 |
|
|
/* Insert vertex in ordered list */
|
| 18 |
|
|
static void
|
| 19 |
|
|
insert_vert(RBFNODE **vlist, RBFNODE *v)
|
| 20 |
|
|
{
|
| 21 |
|
|
int i, j;
|
| 22 |
|
|
|
| 23 |
|
|
for (i = 0; vlist[i] != NULL; i++) {
|
| 24 |
|
|
if (v == vlist[i])
|
| 25 |
|
|
return;
|
| 26 |
|
|
if (v->ord < vlist[i]->ord)
|
| 27 |
|
|
break;
|
| 28 |
|
|
}
|
| 29 |
|
|
for (j = i; vlist[j] != NULL; j++)
|
| 30 |
|
|
;
|
| 31 |
|
|
while (j > i) {
|
| 32 |
|
|
vlist[j] = vlist[j-1];
|
| 33 |
|
|
--j;
|
| 34 |
|
|
}
|
| 35 |
|
|
vlist[i] = v;
|
| 36 |
|
|
}
|
| 37 |
|
|
|
| 38 |
|
|
/* Sort triangle edges in standard order */
|
| 39 |
|
|
static int
|
| 40 |
|
|
order_triangle(MIGRATION *miga[3])
|
| 41 |
|
|
{
|
| 42 |
|
|
RBFNODE *vert[7];
|
| 43 |
|
|
MIGRATION *ord[3];
|
| 44 |
|
|
int i;
|
| 45 |
|
|
/* order vertices, first */
|
| 46 |
|
|
memset(vert, 0, sizeof(vert));
|
| 47 |
|
|
for (i = 3; i--; ) {
|
| 48 |
|
|
if (miga[i] == NULL)
|
| 49 |
|
|
return(0);
|
| 50 |
|
|
insert_vert(vert, miga[i]->rbfv[0]);
|
| 51 |
|
|
insert_vert(vert, miga[i]->rbfv[1]);
|
| 52 |
|
|
}
|
| 53 |
|
|
/* should be just 3 vertices */
|
| 54 |
greg |
2.4 |
if ((vert[2] == NULL) | (vert[3] != NULL))
|
| 55 |
greg |
2.1 |
return(0);
|
| 56 |
|
|
/* identify edge 0 */
|
| 57 |
|
|
for (i = 3; i--; )
|
| 58 |
|
|
if (miga[i]->rbfv[0] == vert[0] &&
|
| 59 |
|
|
miga[i]->rbfv[1] == vert[1]) {
|
| 60 |
|
|
ord[0] = miga[i];
|
| 61 |
|
|
break;
|
| 62 |
|
|
}
|
| 63 |
|
|
if (i < 0)
|
| 64 |
|
|
return(0);
|
| 65 |
|
|
/* identify edge 1 */
|
| 66 |
|
|
for (i = 3; i--; )
|
| 67 |
|
|
if (miga[i]->rbfv[0] == vert[1] &&
|
| 68 |
|
|
miga[i]->rbfv[1] == vert[2]) {
|
| 69 |
|
|
ord[1] = miga[i];
|
| 70 |
|
|
break;
|
| 71 |
|
|
}
|
| 72 |
|
|
if (i < 0)
|
| 73 |
|
|
return(0);
|
| 74 |
|
|
/* identify edge 2 */
|
| 75 |
|
|
for (i = 3; i--; )
|
| 76 |
|
|
if (miga[i]->rbfv[0] == vert[0] &&
|
| 77 |
|
|
miga[i]->rbfv[1] == vert[2]) {
|
| 78 |
|
|
ord[2] = miga[i];
|
| 79 |
|
|
break;
|
| 80 |
|
|
}
|
| 81 |
|
|
if (i < 0)
|
| 82 |
|
|
return(0);
|
| 83 |
|
|
/* reassign order */
|
| 84 |
|
|
miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
|
| 85 |
|
|
return(1);
|
| 86 |
|
|
}
|
| 87 |
|
|
|
| 88 |
greg |
2.4 |
/* Determine if we are close enough to an edge */
|
| 89 |
greg |
2.3 |
static int
|
| 90 |
|
|
on_edge(const MIGRATION *ej, const FVECT ivec)
|
| 91 |
|
|
{
|
| 92 |
greg |
2.4 |
double cos_a, cos_b, cos_c, cos_aplusb;
|
| 93 |
|
|
/* use triangle inequality */
|
| 94 |
|
|
cos_a = DOT(ej->rbfv[0]->invec, ivec);
|
| 95 |
|
|
if (cos_a <= 0)
|
| 96 |
|
|
return(0);
|
| 97 |
|
|
|
| 98 |
|
|
cos_b = DOT(ej->rbfv[1]->invec, ivec);
|
| 99 |
|
|
if (cos_b <= 0)
|
| 100 |
|
|
return(0);
|
| 101 |
greg |
2.3 |
|
| 102 |
greg |
2.4 |
cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b));
|
| 103 |
|
|
if (cos_aplusb <= 0)
|
| 104 |
|
|
return(0);
|
| 105 |
|
|
|
| 106 |
|
|
cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec);
|
| 107 |
|
|
|
| 108 |
|
|
return(cos_c - cos_aplusb < .001);
|
| 109 |
greg |
2.3 |
}
|
| 110 |
|
|
|
| 111 |
|
|
/* Determine if we are inside the given triangle */
|
| 112 |
|
|
static int
|
| 113 |
|
|
in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p)
|
| 114 |
|
|
{
|
| 115 |
|
|
FVECT vc;
|
| 116 |
|
|
int sgn1, sgn2, sgn3;
|
| 117 |
|
|
/* signed volume test */
|
| 118 |
|
|
VCROSS(vc, v1->invec, v2->invec);
|
| 119 |
|
|
sgn1 = (DOT(p, vc) > 0);
|
| 120 |
|
|
VCROSS(vc, v2->invec, v3->invec);
|
| 121 |
|
|
sgn2 = (DOT(p, vc) > 0);
|
| 122 |
|
|
if (sgn1 != sgn2)
|
| 123 |
|
|
return(0);
|
| 124 |
|
|
VCROSS(vc, v3->invec, v1->invec);
|
| 125 |
|
|
sgn3 = (DOT(p, vc) > 0);
|
| 126 |
|
|
return(sgn2 == sgn3);
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
greg |
2.6 |
/* Test (and set) bitmap for edge */
|
| 130 |
greg |
2.4 |
static int
|
| 131 |
|
|
check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark)
|
| 132 |
|
|
{
|
| 133 |
|
|
int ejndx, bit2check;
|
| 134 |
|
|
|
| 135 |
|
|
if (mig->rbfv[0]->ord > mig->rbfv[1]->ord)
|
| 136 |
|
|
ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord;
|
| 137 |
|
|
else
|
| 138 |
|
|
ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord;
|
| 139 |
|
|
|
| 140 |
|
|
bit2check = 1<<(ejndx&07);
|
| 141 |
|
|
|
| 142 |
|
|
if (emap[ejndx>>3] & bit2check)
|
| 143 |
|
|
return(0);
|
| 144 |
|
|
if (mark)
|
| 145 |
|
|
emap[ejndx>>3] |= bit2check;
|
| 146 |
|
|
return(1);
|
| 147 |
|
|
}
|
| 148 |
|
|
|
| 149 |
greg |
2.3 |
/* Compute intersection with the given position over remaining mesh */
|
| 150 |
|
|
static int
|
| 151 |
|
|
in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges,
|
| 152 |
|
|
const FVECT ivec, MIGRATION *mig)
|
| 153 |
|
|
{
|
| 154 |
|
|
MIGRATION *ej1, *ej2;
|
| 155 |
|
|
RBFNODE *tv;
|
| 156 |
|
|
/* check visitation record */
|
| 157 |
greg |
2.4 |
if (!check_edge(emap, nedges, mig, 1))
|
| 158 |
greg |
2.3 |
return(0);
|
| 159 |
|
|
if (on_edge(mig, ivec)) {
|
| 160 |
|
|
miga[0] = mig; /* close enough to edge */
|
| 161 |
|
|
return(1);
|
| 162 |
|
|
}
|
| 163 |
|
|
/* do triangles either side */
|
| 164 |
|
|
for (ej1 = mig->rbfv[0]->ejl; ej1 != NULL;
|
| 165 |
|
|
ej1 = nextedge(mig->rbfv[0],ej1)) {
|
| 166 |
greg |
2.4 |
if (ej1 == mig)
|
| 167 |
|
|
continue;
|
| 168 |
|
|
tv = opp_rbf(mig->rbfv[0],ej1);
|
| 169 |
|
|
for (ej2 = tv->ejl; ej2 != NULL; ej2 = nextedge(tv,ej2))
|
| 170 |
|
|
if (opp_rbf(tv,ej2) == mig->rbfv[1]) {
|
| 171 |
|
|
int do_ej1 = check_edge(emap, nedges, ej1, 0);
|
| 172 |
|
|
int do_ej2 = check_edge(emap, nedges, ej2, 0);
|
| 173 |
|
|
if (do_ej1 && in_mesh(miga, emap, nedges, ivec, ej1))
|
| 174 |
|
|
return(1);
|
| 175 |
|
|
if (do_ej2 && in_mesh(miga, emap, nedges, ivec, ej2))
|
| 176 |
|
|
return(1);
|
| 177 |
|
|
/* check just once */
|
| 178 |
|
|
if (do_ej1 & do_ej2 && in_tri(mig->rbfv[0],
|
| 179 |
|
|
mig->rbfv[1], tv, ivec)) {
|
| 180 |
|
|
miga[0] = mig;
|
| 181 |
|
|
miga[1] = ej1;
|
| 182 |
|
|
miga[2] = ej2;
|
| 183 |
|
|
return(1);
|
| 184 |
greg |
2.3 |
}
|
| 185 |
greg |
2.4 |
}
|
| 186 |
greg |
2.3 |
}
|
| 187 |
greg |
2.4 |
return(0); /* not near this edge */
|
| 188 |
greg |
2.3 |
}
|
| 189 |
|
|
|
| 190 |
greg |
2.1 |
/* Find edge(s) for interpolating the given vector, applying symmetry */
|
| 191 |
|
|
int
|
| 192 |
|
|
get_interp(MIGRATION *miga[3], FVECT invec)
|
| 193 |
|
|
{
|
| 194 |
|
|
miga[0] = miga[1] = miga[2] = NULL;
|
| 195 |
|
|
if (single_plane_incident) { /* isotropic BSDF? */
|
| 196 |
|
|
RBFNODE *rbf; /* find edge we're on */
|
| 197 |
|
|
for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
|
| 198 |
|
|
if (input_orient*rbf->invec[2] < input_orient*invec[2])
|
| 199 |
|
|
break;
|
| 200 |
|
|
if (rbf->next != NULL &&
|
| 201 |
|
|
input_orient*rbf->next->invec[2] <
|
| 202 |
|
|
input_orient*invec[2]) {
|
| 203 |
|
|
for (miga[0] = rbf->ejl; miga[0] != NULL;
|
| 204 |
|
|
miga[0] = nextedge(rbf,miga[0]))
|
| 205 |
greg |
2.5 |
if (opp_rbf(rbf,miga[0]) == rbf->next) {
|
| 206 |
|
|
double nf = 1.-rbf->invec[2]*rbf->invec[2];
|
| 207 |
|
|
if (nf > FTINY) {
|
| 208 |
|
|
nf = sqrt((1.-invec[2]*invec[2])/nf);
|
| 209 |
|
|
invec[0] = nf*rbf->invec[0];
|
| 210 |
|
|
invec[1] = nf*rbf->invec[1];
|
| 211 |
|
|
}
|
| 212 |
greg |
2.1 |
return(0);
|
| 213 |
greg |
2.5 |
}
|
| 214 |
greg |
2.1 |
break;
|
| 215 |
|
|
}
|
| 216 |
|
|
}
|
| 217 |
|
|
return(-1); /* outside range! */
|
| 218 |
|
|
}
|
| 219 |
|
|
{ /* else use triangle mesh */
|
| 220 |
greg |
2.3 |
int sym = use_symmetry(invec);
|
| 221 |
|
|
int nedges = 0;
|
| 222 |
|
|
MIGRATION *mep;
|
| 223 |
|
|
unsigned char *emap;
|
| 224 |
|
|
/* clear visitation map */
|
| 225 |
|
|
for (mep = mig_list; mep != NULL; mep = mep->next)
|
| 226 |
|
|
++nedges;
|
| 227 |
|
|
emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1);
|
| 228 |
|
|
if (emap == NULL) {
|
| 229 |
|
|
fprintf(stderr, "%s: Out of memory in get_interp()\n",
|
| 230 |
|
|
progname);
|
| 231 |
|
|
exit(1);
|
| 232 |
|
|
}
|
| 233 |
|
|
/* identify intersection */
|
| 234 |
|
|
if (!in_mesh(miga, emap, nedges, invec, mig_list))
|
| 235 |
|
|
sym = -1; /* outside mesh */
|
| 236 |
|
|
else if (miga[1] != NULL &&
|
| 237 |
|
|
(miga[2] == NULL || !order_triangle(miga))) {
|
| 238 |
greg |
2.1 |
#ifdef DEBUG
|
| 239 |
|
|
fputs("Munged triangle in get_interp()\n", stderr);
|
| 240 |
|
|
#endif
|
| 241 |
greg |
2.3 |
sym = -1;
|
| 242 |
greg |
2.1 |
}
|
| 243 |
greg |
2.3 |
free(emap);
|
| 244 |
greg |
2.1 |
return(sym); /* return in standard order */
|
| 245 |
|
|
}
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
/* Advect and allocate new RBF along edge */
|
| 249 |
|
|
static RBFNODE *
|
| 250 |
|
|
e_advect_rbf(const MIGRATION *mig, const FVECT invec)
|
| 251 |
|
|
{
|
| 252 |
|
|
RBFNODE *rbf;
|
| 253 |
|
|
int n, i, j;
|
| 254 |
|
|
double t, full_dist;
|
| 255 |
|
|
/* get relative position */
|
| 256 |
|
|
t = acos(DOT(invec, mig->rbfv[0]->invec));
|
| 257 |
greg |
2.5 |
if (t < M_PI/grid_res) { /* near first DSF */
|
| 258 |
greg |
2.1 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[0]->nrbf-1);
|
| 259 |
|
|
rbf = (RBFNODE *)malloc(n);
|
| 260 |
|
|
if (rbf == NULL)
|
| 261 |
|
|
goto memerr;
|
| 262 |
|
|
memcpy(rbf, mig->rbfv[0], n); /* just duplicate */
|
| 263 |
greg |
2.8 |
rbf->next = NULL; rbf->ejl = NULL;
|
| 264 |
greg |
2.1 |
return(rbf);
|
| 265 |
|
|
}
|
| 266 |
|
|
full_dist = acos(DOT(mig->rbfv[0]->invec, mig->rbfv[1]->invec));
|
| 267 |
greg |
2.5 |
if (t > full_dist-M_PI/grid_res) { /* near second DSF */
|
| 268 |
greg |
2.1 |
n = sizeof(RBFNODE) + sizeof(RBFVAL)*(mig->rbfv[1]->nrbf-1);
|
| 269 |
|
|
rbf = (RBFNODE *)malloc(n);
|
| 270 |
|
|
if (rbf == NULL)
|
| 271 |
|
|
goto memerr;
|
| 272 |
|
|
memcpy(rbf, mig->rbfv[1], n); /* just duplicate */
|
| 273 |
greg |
2.8 |
rbf->next = NULL; rbf->ejl = NULL;
|
| 274 |
greg |
2.1 |
return(rbf);
|
| 275 |
|
|
}
|
| 276 |
|
|
t /= full_dist;
|
| 277 |
|
|
n = 0; /* count migrating particles */
|
| 278 |
|
|
for (i = 0; i < mtx_nrows(mig); i++)
|
| 279 |
|
|
for (j = 0; j < mtx_ncols(mig); j++)
|
| 280 |
greg |
2.2 |
n += (mtx_coef(mig,i,j) > FTINY);
|
| 281 |
greg |
2.1 |
#ifdef DEBUG
|
| 282 |
|
|
fprintf(stderr, "Input RBFs have %d, %d nodes -> output has %d\n",
|
| 283 |
|
|
mig->rbfv[0]->nrbf, mig->rbfv[1]->nrbf, n);
|
| 284 |
|
|
#endif
|
| 285 |
|
|
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
|
| 286 |
|
|
if (rbf == NULL)
|
| 287 |
|
|
goto memerr;
|
| 288 |
|
|
rbf->next = NULL; rbf->ejl = NULL;
|
| 289 |
|
|
VCOPY(rbf->invec, invec);
|
| 290 |
|
|
rbf->nrbf = n;
|
| 291 |
|
|
rbf->vtotal = 1.-t + t*mig->rbfv[1]->vtotal/mig->rbfv[0]->vtotal;
|
| 292 |
|
|
n = 0; /* advect RBF lobes */
|
| 293 |
|
|
for (i = 0; i < mtx_nrows(mig); i++) {
|
| 294 |
|
|
const RBFVAL *rbf0i = &mig->rbfv[0]->rbfa[i];
|
| 295 |
|
|
const float peak0 = rbf0i->peak;
|
| 296 |
|
|
const double rad0 = R2ANG(rbf0i->crad);
|
| 297 |
|
|
FVECT v0;
|
| 298 |
|
|
float mv;
|
| 299 |
|
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
|
| 300 |
|
|
for (j = 0; j < mtx_ncols(mig); j++)
|
| 301 |
greg |
2.2 |
if ((mv = mtx_coef(mig,i,j)) > FTINY) {
|
| 302 |
greg |
2.1 |
const RBFVAL *rbf1j = &mig->rbfv[1]->rbfa[j];
|
| 303 |
|
|
double rad1 = R2ANG(rbf1j->crad);
|
| 304 |
|
|
FVECT v;
|
| 305 |
|
|
int pos[2];
|
| 306 |
|
|
rbf->rbfa[n].peak = peak0 * mv * rbf->vtotal;
|
| 307 |
|
|
rbf->rbfa[n].crad = ANG2R(sqrt(rad0*rad0*(1.-t) +
|
| 308 |
|
|
rad1*rad1*t));
|
| 309 |
|
|
ovec_from_pos(v, rbf1j->gx, rbf1j->gy);
|
| 310 |
greg |
2.8 |
geodesic(v, v0, v, t, GEOD_REL);
|
| 311 |
greg |
2.1 |
pos_from_vec(pos, v);
|
| 312 |
|
|
rbf->rbfa[n].gx = pos[0];
|
| 313 |
|
|
rbf->rbfa[n].gy = pos[1];
|
| 314 |
|
|
++n;
|
| 315 |
|
|
}
|
| 316 |
|
|
}
|
| 317 |
|
|
rbf->vtotal *= mig->rbfv[0]->vtotal; /* turn ratio into actual */
|
| 318 |
|
|
return(rbf);
|
| 319 |
|
|
memerr:
|
| 320 |
|
|
fprintf(stderr, "%s: Out of memory in e_advect_rbf()\n", progname);
|
| 321 |
|
|
exit(1);
|
| 322 |
|
|
return(NULL); /* pro forma return */
|
| 323 |
|
|
}
|
| 324 |
|
|
|
| 325 |
|
|
/* Partially advect between recorded incident angles and allocate new RBF */
|
| 326 |
|
|
RBFNODE *
|
| 327 |
|
|
advect_rbf(const FVECT invec)
|
| 328 |
|
|
{
|
| 329 |
|
|
FVECT sivec;
|
| 330 |
|
|
MIGRATION *miga[3];
|
| 331 |
|
|
RBFNODE *rbf;
|
| 332 |
|
|
int sym;
|
| 333 |
|
|
float mbfact, mcfact;
|
| 334 |
|
|
int n, i, j, k;
|
| 335 |
|
|
FVECT v0, v1, v2;
|
| 336 |
greg |
2.8 |
double s, t;
|
| 337 |
greg |
2.1 |
|
| 338 |
|
|
VCOPY(sivec, invec); /* find triangle/edge */
|
| 339 |
|
|
sym = get_interp(miga, sivec);
|
| 340 |
|
|
if (sym < 0) /* can't interpolate? */
|
| 341 |
|
|
return(NULL);
|
| 342 |
|
|
if (miga[1] == NULL) { /* advect along edge? */
|
| 343 |
|
|
rbf = e_advect_rbf(miga[0], sivec);
|
| 344 |
greg |
2.5 |
if (single_plane_incident)
|
| 345 |
|
|
rotate_rbf(rbf, invec);
|
| 346 |
|
|
else
|
| 347 |
|
|
rev_rbf_symmetry(rbf, sym);
|
| 348 |
greg |
2.1 |
return(rbf);
|
| 349 |
|
|
}
|
| 350 |
|
|
#ifdef DEBUG
|
| 351 |
|
|
if (miga[0]->rbfv[0] != miga[2]->rbfv[0] |
|
| 352 |
|
|
miga[0]->rbfv[1] != miga[1]->rbfv[0] |
|
| 353 |
|
|
miga[1]->rbfv[1] != miga[2]->rbfv[1]) {
|
| 354 |
|
|
fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname);
|
| 355 |
|
|
exit(1);
|
| 356 |
|
|
}
|
| 357 |
|
|
#endif
|
| 358 |
|
|
/* figure out position */
|
| 359 |
|
|
fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
|
| 360 |
|
|
normalize(v0);
|
| 361 |
|
|
fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
|
| 362 |
|
|
normalize(v2);
|
| 363 |
|
|
fcross(v1, sivec, miga[1]->rbfv[1]->invec);
|
| 364 |
|
|
normalize(v1);
|
| 365 |
greg |
2.7 |
s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
|
| 366 |
greg |
2.1 |
geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
|
| 367 |
greg |
2.7 |
s, GEOD_REL);
|
| 368 |
greg |
2.8 |
t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
|
| 369 |
greg |
2.1 |
n = 0; /* count migrating particles */
|
| 370 |
|
|
for (i = 0; i < mtx_nrows(miga[0]); i++)
|
| 371 |
|
|
for (j = 0; j < mtx_ncols(miga[0]); j++)
|
| 372 |
greg |
2.2 |
for (k = (mtx_coef(miga[0],i,j) > FTINY) *
|
| 373 |
greg |
2.1 |
mtx_ncols(miga[2]); k--; )
|
| 374 |
greg |
2.4 |
n += (mtx_coef(miga[2],i,k) > FTINY ||
|
| 375 |
greg |
2.2 |
mtx_coef(miga[1],j,k) > FTINY);
|
| 376 |
greg |
2.1 |
#ifdef DEBUG
|
| 377 |
|
|
fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
|
| 378 |
|
|
miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
|
| 379 |
|
|
miga[2]->rbfv[1]->nrbf, n);
|
| 380 |
|
|
#endif
|
| 381 |
|
|
rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
|
| 382 |
|
|
if (rbf == NULL) {
|
| 383 |
|
|
fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname);
|
| 384 |
|
|
exit(1);
|
| 385 |
|
|
}
|
| 386 |
|
|
rbf->next = NULL; rbf->ejl = NULL;
|
| 387 |
|
|
VCOPY(rbf->invec, sivec);
|
| 388 |
|
|
rbf->nrbf = n;
|
| 389 |
|
|
n = 0; /* compute RBF lobes */
|
| 390 |
|
|
mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
|
| 391 |
|
|
(1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
|
| 392 |
|
|
mcfact = (1.-s) *
|
| 393 |
|
|
(1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
|
| 394 |
|
|
for (i = 0; i < mtx_nrows(miga[0]); i++) {
|
| 395 |
|
|
const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
|
| 396 |
|
|
const float w0i = rbf0i->peak;
|
| 397 |
|
|
const double rad0i = R2ANG(rbf0i->crad);
|
| 398 |
|
|
ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
|
| 399 |
|
|
for (j = 0; j < mtx_ncols(miga[0]); j++) {
|
| 400 |
greg |
2.2 |
const float ma = mtx_coef(miga[0],i,j);
|
| 401 |
greg |
2.1 |
const RBFVAL *rbf1j;
|
| 402 |
|
|
double rad1j, srad2;
|
| 403 |
|
|
if (ma <= FTINY)
|
| 404 |
|
|
continue;
|
| 405 |
|
|
rbf1j = &miga[0]->rbfv[1]->rbfa[j];
|
| 406 |
|
|
rad1j = R2ANG(rbf1j->crad);
|
| 407 |
|
|
srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*rad1j*rad1j;
|
| 408 |
|
|
ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
|
| 409 |
greg |
2.7 |
geodesic(v1, v0, v1, s, GEOD_REL);
|
| 410 |
greg |
2.1 |
for (k = 0; k < mtx_ncols(miga[2]); k++) {
|
| 411 |
greg |
2.2 |
float mb = mtx_coef(miga[1],j,k);
|
| 412 |
|
|
float mc = mtx_coef(miga[2],i,k);
|
| 413 |
greg |
2.1 |
const RBFVAL *rbf2k;
|
| 414 |
|
|
double rad2k;
|
| 415 |
|
|
int pos[2];
|
| 416 |
greg |
2.4 |
if ((mb <= FTINY) & (mc <= FTINY))
|
| 417 |
greg |
2.1 |
continue;
|
| 418 |
|
|
rbf2k = &miga[2]->rbfv[1]->rbfa[k];
|
| 419 |
|
|
rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact);
|
| 420 |
|
|
rad2k = R2ANG(rbf2k->crad);
|
| 421 |
|
|
rbf->rbfa[n].crad = ANG2R(sqrt(srad2 + t*rad2k*rad2k));
|
| 422 |
|
|
ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
|
| 423 |
greg |
2.8 |
geodesic(v2, v1, v2, t, GEOD_REL);
|
| 424 |
|
|
pos_from_vec(pos, v2);
|
| 425 |
greg |
2.1 |
rbf->rbfa[n].gx = pos[0];
|
| 426 |
|
|
rbf->rbfa[n].gy = pos[1];
|
| 427 |
|
|
++n;
|
| 428 |
|
|
}
|
| 429 |
|
|
}
|
| 430 |
|
|
}
|
| 431 |
|
|
rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
|
| 432 |
|
|
rev_rbf_symmetry(rbf, sym);
|
| 433 |
|
|
return(rbf);
|
| 434 |
|
|
}
|