ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdfinterp.c
Revision: 2.22
Committed: Wed Sep 8 01:05:57 2021 UTC (2 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.21: +2 -3 lines
Log Message:
fix(bsdf2ttree, bsdf2klems): tightened threshold for on-edge detection

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.22 static const char RCSid[] = "$Id: bsdfinterp.c,v 2.21 2016/01/29 16:21:55 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Interpolate BSDF data from radial basis functions in advection mesh.
6     *
7     * G. Ward
8     */
9    
10     #define _USE_MATH_DEFINES
11     #include <stdio.h>
12     #include <stdlib.h>
13     #include <string.h>
14     #include <math.h>
15     #include "bsdfrep.h"
16    
17     /* Insert vertex in ordered list */
18     static void
19     insert_vert(RBFNODE **vlist, RBFNODE *v)
20     {
21     int i, j;
22    
23     for (i = 0; vlist[i] != NULL; i++) {
24     if (v == vlist[i])
25     return;
26     if (v->ord < vlist[i]->ord)
27     break;
28     }
29     for (j = i; vlist[j] != NULL; j++)
30     ;
31     while (j > i) {
32     vlist[j] = vlist[j-1];
33     --j;
34     }
35     vlist[i] = v;
36     }
37    
38     /* Sort triangle edges in standard order */
39     static int
40     order_triangle(MIGRATION *miga[3])
41     {
42     RBFNODE *vert[7];
43     MIGRATION *ord[3];
44     int i;
45     /* order vertices, first */
46     memset(vert, 0, sizeof(vert));
47     for (i = 3; i--; ) {
48     if (miga[i] == NULL)
49     return(0);
50     insert_vert(vert, miga[i]->rbfv[0]);
51     insert_vert(vert, miga[i]->rbfv[1]);
52     }
53     /* should be just 3 vertices */
54 greg 2.4 if ((vert[2] == NULL) | (vert[3] != NULL))
55 greg 2.1 return(0);
56     /* identify edge 0 */
57     for (i = 3; i--; )
58     if (miga[i]->rbfv[0] == vert[0] &&
59     miga[i]->rbfv[1] == vert[1]) {
60     ord[0] = miga[i];
61     break;
62     }
63     if (i < 0)
64     return(0);
65     /* identify edge 1 */
66     for (i = 3; i--; )
67     if (miga[i]->rbfv[0] == vert[1] &&
68     miga[i]->rbfv[1] == vert[2]) {
69     ord[1] = miga[i];
70     break;
71     }
72     if (i < 0)
73     return(0);
74     /* identify edge 2 */
75     for (i = 3; i--; )
76     if (miga[i]->rbfv[0] == vert[0] &&
77     miga[i]->rbfv[1] == vert[2]) {
78     ord[2] = miga[i];
79     break;
80     }
81     if (i < 0)
82     return(0);
83     /* reassign order */
84     miga[0] = ord[0]; miga[1] = ord[1]; miga[2] = ord[2];
85     return(1);
86     }
87    
88 greg 2.4 /* Determine if we are close enough to an edge */
89 greg 2.3 static int
90     on_edge(const MIGRATION *ej, const FVECT ivec)
91     {
92 greg 2.4 double cos_a, cos_b, cos_c, cos_aplusb;
93     /* use triangle inequality */
94     cos_a = DOT(ej->rbfv[0]->invec, ivec);
95     if (cos_a <= 0)
96     return(0);
97 greg 2.15 if (cos_a >= 1.) /* handles rounding error */
98     return(1);
99 greg 2.4
100     cos_b = DOT(ej->rbfv[1]->invec, ivec);
101     if (cos_b <= 0)
102     return(0);
103 greg 2.15 if (cos_b >= 1.)
104     return(1);
105 greg 2.3
106 greg 2.4 cos_aplusb = cos_a*cos_b - sqrt((1.-cos_a*cos_a)*(1.-cos_b*cos_b));
107     if (cos_aplusb <= 0)
108     return(0);
109    
110     cos_c = DOT(ej->rbfv[0]->invec, ej->rbfv[1]->invec);
111 greg 2.22 return(cos_c - cos_aplusb < .0002);
112 greg 2.3 }
113    
114     /* Determine if we are inside the given triangle */
115     static int
116     in_tri(const RBFNODE *v1, const RBFNODE *v2, const RBFNODE *v3, const FVECT p)
117     {
118     FVECT vc;
119     int sgn1, sgn2, sgn3;
120     /* signed volume test */
121     VCROSS(vc, v1->invec, v2->invec);
122     sgn1 = (DOT(p, vc) > 0);
123     VCROSS(vc, v2->invec, v3->invec);
124     sgn2 = (DOT(p, vc) > 0);
125     if (sgn1 != sgn2)
126     return(0);
127     VCROSS(vc, v3->invec, v1->invec);
128     sgn3 = (DOT(p, vc) > 0);
129     return(sgn2 == sgn3);
130     }
131    
132 greg 2.6 /* Test (and set) bitmap for edge */
133 greg 2.4 static int
134     check_edge(unsigned char *emap, int nedges, const MIGRATION *mig, int mark)
135     {
136     int ejndx, bit2check;
137    
138     if (mig->rbfv[0]->ord > mig->rbfv[1]->ord)
139     ejndx = mig->rbfv[1]->ord + (nedges-1)*mig->rbfv[0]->ord;
140     else
141     ejndx = mig->rbfv[0]->ord + (nedges-1)*mig->rbfv[1]->ord;
142    
143     bit2check = 1<<(ejndx&07);
144    
145     if (emap[ejndx>>3] & bit2check)
146     return(0);
147     if (mark)
148     emap[ejndx>>3] |= bit2check;
149     return(1);
150     }
151    
152 greg 2.3 /* Compute intersection with the given position over remaining mesh */
153     static int
154     in_mesh(MIGRATION *miga[3], unsigned char *emap, int nedges,
155     const FVECT ivec, MIGRATION *mig)
156     {
157 greg 2.9 RBFNODE *tv[2];
158     MIGRATION *sej[2], *dej[2];
159     int i;
160 greg 2.3 /* check visitation record */
161 greg 2.4 if (!check_edge(emap, nedges, mig, 1))
162 greg 2.3 return(0);
163     if (on_edge(mig, ivec)) {
164     miga[0] = mig; /* close enough to edge */
165     return(1);
166     }
167 greg 2.9 if (!get_triangles(tv, mig)) /* do triangles either side? */
168     return(0);
169     for (i = 2; i--; ) { /* identify edges to check */
170     MIGRATION *ej;
171     sej[i] = dej[i] = NULL;
172     if (tv[i] == NULL)
173     continue;
174     for (ej = tv[i]->ejl; ej != NULL; ej = nextedge(tv[i],ej)) {
175     RBFNODE *rbfop = opp_rbf(tv[i],ej);
176     if (rbfop == mig->rbfv[0]) {
177     if (check_edge(emap, nedges, ej, 0))
178     sej[i] = ej;
179     } else if (rbfop == mig->rbfv[1]) {
180     if (check_edge(emap, nedges, ej, 0))
181     dej[i] = ej;
182 greg 2.3 }
183 greg 2.4 }
184 greg 2.3 }
185 greg 2.9 for (i = 2; i--; ) { /* check triangles just once */
186     if (sej[i] != NULL && in_mesh(miga, emap, nedges, ivec, sej[i]))
187     return(1);
188     if (dej[i] != NULL && in_mesh(miga, emap, nedges, ivec, dej[i]))
189     return(1);
190     if ((sej[i] == NULL) | (dej[i] == NULL))
191     continue;
192     if (in_tri(mig->rbfv[0], mig->rbfv[1], tv[i], ivec)) {
193     miga[0] = mig;
194     miga[1] = sej[i];
195     miga[2] = dej[i];
196     return(1);
197     }
198     }
199 greg 2.4 return(0); /* not near this edge */
200 greg 2.3 }
201    
202 greg 2.1 /* Find edge(s) for interpolating the given vector, applying symmetry */
203     int
204     get_interp(MIGRATION *miga[3], FVECT invec)
205     {
206     miga[0] = miga[1] = miga[2] = NULL;
207     if (single_plane_incident) { /* isotropic BSDF? */
208 greg 2.10 RBFNODE *rbf; /* find edge we're on */
209     for (rbf = dsf_list; rbf != NULL; rbf = rbf->next) {
210 greg 2.16 if (input_orient*rbf->invec[2] < input_orient*invec[2]-FTINY)
211 greg 2.10 break;
212     if (rbf->next != NULL && input_orient*rbf->next->invec[2] <
213 greg 2.16 input_orient*invec[2]+FTINY) {
214 greg 2.10 for (miga[0] = rbf->ejl; miga[0] != NULL;
215     miga[0] = nextedge(rbf,miga[0]))
216     if (opp_rbf(rbf,miga[0]) == rbf->next) {
217 greg 2.18 double nf = 1. -
218     rbf->next->invec[2]*rbf->next->invec[2];
219 greg 2.10 if (nf > FTINY) { /* rotate to match */
220     nf = sqrt((1.-invec[2]*invec[2])/nf);
221 greg 2.18 invec[0] = nf*rbf->next->invec[0];
222     invec[1] = nf*rbf->next->invec[1];
223 greg 2.10 }
224 greg 2.18 return(0); /* rotational symmetry */
225 greg 2.1 }
226 greg 2.10 break;
227 greg 2.1 }
228 greg 2.10 }
229     return(-1); /* outside range! */
230 greg 2.1 }
231     { /* else use triangle mesh */
232 greg 2.3 int sym = use_symmetry(invec);
233     int nedges = 0;
234     MIGRATION *mep;
235     unsigned char *emap;
236     /* clear visitation map */
237     for (mep = mig_list; mep != NULL; mep = mep->next)
238     ++nedges;
239     emap = (unsigned char *)calloc((nedges*(nedges-1) + 7)>>3, 1);
240     if (emap == NULL) {
241     fprintf(stderr, "%s: Out of memory in get_interp()\n",
242     progname);
243     exit(1);
244     }
245     /* identify intersection */
246 greg 2.9 if (!in_mesh(miga, emap, nedges, invec, mig_list)) {
247     #ifdef DEBUG
248     fprintf(stderr,
249     "Incident angle (%.1f,%.1f) deg. outside mesh\n",
250     get_theta180(invec), get_phi360(invec));
251     #endif
252 greg 2.3 sym = -1; /* outside mesh */
253 greg 2.9 } else if (miga[1] != NULL &&
254 greg 2.3 (miga[2] == NULL || !order_triangle(miga))) {
255 greg 2.1 #ifdef DEBUG
256     fputs("Munged triangle in get_interp()\n", stderr);
257     #endif
258 greg 2.3 sym = -1;
259 greg 2.1 }
260 greg 2.3 free(emap);
261 greg 2.1 return(sym); /* return in standard order */
262     }
263     }
264    
265 greg 2.16 /* Advect between recorded incident angles and allocate new RBF */
266 greg 2.1 RBFNODE *
267 greg 2.12 advect_rbf(const FVECT invec, int lobe_lim)
268 greg 2.1 {
269 greg 2.12 double cthresh = FTINY;
270 greg 2.1 FVECT sivec;
271     MIGRATION *miga[3];
272     RBFNODE *rbf;
273     int sym;
274     float mbfact, mcfact;
275     int n, i, j, k;
276     FVECT v0, v1, v2;
277 greg 2.8 double s, t;
278 greg 2.1
279     VCOPY(sivec, invec); /* find triangle/edge */
280     sym = get_interp(miga, sivec);
281     if (sym < 0) /* can't interpolate? */
282 greg 2.19 return(def_rbf_spec(invec));
283 greg 2.1 if (miga[1] == NULL) { /* advect along edge? */
284 greg 2.13 rbf = e_advect_rbf(miga[0], sivec, lobe_lim);
285 greg 2.5 if (single_plane_incident)
286     rotate_rbf(rbf, invec);
287     else
288     rev_rbf_symmetry(rbf, sym);
289 greg 2.1 return(rbf);
290     }
291     #ifdef DEBUG
292 greg 2.16 if ((miga[0]->rbfv[0] != miga[2]->rbfv[0]) |
293     (miga[0]->rbfv[1] != miga[1]->rbfv[0]) |
294     (miga[1]->rbfv[1] != miga[2]->rbfv[1])) {
295 greg 2.1 fprintf(stderr, "%s: Triangle vertex screw-up!\n", progname);
296     exit(1);
297     }
298     #endif
299     /* figure out position */
300     fcross(v0, miga[2]->rbfv[0]->invec, miga[2]->rbfv[1]->invec);
301     normalize(v0);
302     fcross(v2, miga[1]->rbfv[0]->invec, miga[1]->rbfv[1]->invec);
303     normalize(v2);
304     fcross(v1, sivec, miga[1]->rbfv[1]->invec);
305     normalize(v1);
306 greg 2.7 s = acos(DOT(v0,v1)) / acos(DOT(v0,v2));
307 greg 2.1 geodesic(v1, miga[0]->rbfv[0]->invec, miga[0]->rbfv[1]->invec,
308 greg 2.7 s, GEOD_REL);
309 greg 2.8 t = acos(DOT(v1,sivec)) / acos(DOT(v1,miga[1]->rbfv[1]->invec));
310 greg 2.12 tryagain:
311 greg 2.1 n = 0; /* count migrating particles */
312     for (i = 0; i < mtx_nrows(miga[0]); i++)
313     for (j = 0; j < mtx_ncols(miga[0]); j++)
314 greg 2.12 for (k = (mtx_coef(miga[0],i,j) > cthresh) *
315 greg 2.1 mtx_ncols(miga[2]); k--; )
316 greg 2.12 n += (mtx_coef(miga[2],i,k) > cthresh ||
317     mtx_coef(miga[1],j,k) > cthresh);
318 greg 2.13 /* are we over our limit? */
319 greg 2.12 if ((lobe_lim > 0) & (n > lobe_lim)) {
320     cthresh = cthresh*2. + 10.*FTINY;
321     goto tryagain;
322     }
323 greg 2.1 #ifdef DEBUG
324     fprintf(stderr, "Input RBFs have %d, %d, %d nodes -> output has %d\n",
325     miga[0]->rbfv[0]->nrbf, miga[0]->rbfv[1]->nrbf,
326     miga[2]->rbfv[1]->nrbf, n);
327     #endif
328     rbf = (RBFNODE *)malloc(sizeof(RBFNODE) + sizeof(RBFVAL)*(n-1));
329     if (rbf == NULL) {
330     fprintf(stderr, "%s: Out of memory in advect_rbf()\n", progname);
331     exit(1);
332     }
333     rbf->next = NULL; rbf->ejl = NULL;
334     VCOPY(rbf->invec, sivec);
335     rbf->nrbf = n;
336     n = 0; /* compute RBF lobes */
337     mbfact = s * miga[0]->rbfv[1]->vtotal/miga[0]->rbfv[0]->vtotal *
338     (1.-t + t*miga[1]->rbfv[1]->vtotal/miga[1]->rbfv[0]->vtotal);
339     mcfact = (1.-s) *
340     (1.-t + t*miga[2]->rbfv[1]->vtotal/miga[2]->rbfv[0]->vtotal);
341     for (i = 0; i < mtx_nrows(miga[0]); i++) {
342     const RBFVAL *rbf0i = &miga[0]->rbfv[0]->rbfa[i];
343     const float w0i = rbf0i->peak;
344     const double rad0i = R2ANG(rbf0i->crad);
345 greg 2.21 C_COLOR cc0;
346 greg 2.1 ovec_from_pos(v0, rbf0i->gx, rbf0i->gy);
347 greg 2.21 c_decodeChroma(&cc0, rbf0i->chroma);
348 greg 2.1 for (j = 0; j < mtx_ncols(miga[0]); j++) {
349 greg 2.2 const float ma = mtx_coef(miga[0],i,j);
350 greg 2.1 const RBFVAL *rbf1j;
351 greg 2.21 C_COLOR ccs;
352 greg 2.14 double srad2;
353 greg 2.12 if (ma <= cthresh)
354 greg 2.1 continue;
355     rbf1j = &miga[0]->rbfv[1]->rbfa[j];
356 greg 2.21 c_decodeChroma(&ccs, rbf1j->chroma);
357     c_cmix(&ccs, 1.-s, &cc0, s, &ccs);
358 greg 2.14 srad2 = R2ANG(rbf1j->crad);
359     srad2 = (1.-s)*(1.-t)*rad0i*rad0i + s*(1.-t)*srad2*srad2;
360 greg 2.1 ovec_from_pos(v1, rbf1j->gx, rbf1j->gy);
361 greg 2.7 geodesic(v1, v0, v1, s, GEOD_REL);
362 greg 2.1 for (k = 0; k < mtx_ncols(miga[2]); k++) {
363 greg 2.2 float mb = mtx_coef(miga[1],j,k);
364     float mc = mtx_coef(miga[2],i,k);
365 greg 2.1 const RBFVAL *rbf2k;
366 greg 2.14 double rad2;
367 greg 2.1 int pos[2];
368 greg 2.12 if ((mb <= cthresh) & (mc <= cthresh))
369 greg 2.1 continue;
370     rbf2k = &miga[2]->rbfv[1]->rbfa[k];
371 greg 2.14 rad2 = R2ANG(rbf2k->crad);
372     rad2 = srad2 + t*rad2*rad2;
373     rbf->rbfa[n].peak = w0i * ma * (mb*mbfact + mc*mcfact) *
374     rad0i*rad0i/rad2;
375 greg 2.21 if (rbf_colorimetry == RBCtristimulus) {
376     C_COLOR cres;
377     c_decodeChroma(&cres, rbf2k->chroma);
378     c_cmix(&cres, 1.-t, &ccs, t, &cres);
379     rbf->rbfa[n].chroma = c_encodeChroma(&cres);
380     } else
381     rbf->rbfa[n].chroma = c_dfchroma;
382 greg 2.14 rbf->rbfa[n].crad = ANG2R(sqrt(rad2));
383 greg 2.1 ovec_from_pos(v2, rbf2k->gx, rbf2k->gy);
384 greg 2.8 geodesic(v2, v1, v2, t, GEOD_REL);
385     pos_from_vec(pos, v2);
386 greg 2.1 rbf->rbfa[n].gx = pos[0];
387     rbf->rbfa[n].gy = pos[1];
388     ++n;
389     }
390     }
391     }
392     rbf->vtotal = miga[0]->rbfv[0]->vtotal * (mbfact + mcfact);
393     rev_rbf_symmetry(rbf, sym);
394     return(rbf);
395     }