#ifndef lint static const char RCSid[] = "$Id: bsdf2ttree.c,v 2.60 2023/09/12 16:40:57 greg Exp $"; #endif /* * Load measured BSDF interpolant and write out as XML file with tensor tree. * * G. Ward */ #define _USE_MATH_DEFINES #include #include #include #include "random.h" #include "platform.h" #include "paths.h" #include "rtio.h" #include "calcomp.h" #include "bsdfrep.h" /* global argv[0] */ char *progname; /* reciprocity averaging option */ static const char *recip = ""; /* percentage to cull (<0 to turn off) */ static double pctcull = 90.; /* sampling order */ static int samp_order = 6; /* super-sampling threshold */ static double ssamp_thresh = 0.35; /* number of super-samples */ static int nssamp = 256; /* limit on number of RBF lobes */ static int lobe_lim = 15000; /* progress bar length */ static int do_prog = 79; #define MAXCARG 512 /* wrapBSDF command */ static char *wrapBSDF[MAXCARG] = {"wrapBSDF", "-U"}; static int wbsdfac = 2; /* Add argument to wrapBSDF, allocating space if !isstatic */ static void add_wbsdf(const char *arg, int isstatic) { if (arg == NULL) return; if (wbsdfac >= MAXCARG-1) { fputs(progname, stderr); fputs(": too many command arguments to wrapBSDF\n", stderr); exit(1); } if (!*arg) arg = ""; else if (!isstatic) arg = savqstr((char *)arg); wrapBSDF[wbsdfac++] = (char *)arg; } /* Create Yuv component file and add appropriate arguments */ static char * create_component_file(int c) { static const char sname[3][6] = {"CIE-Y", "CIE-u", "CIE-v"}; static const char cname[4][4] = {"-rf", "-tf", "-tb", "-rb"}; char *tfname = mktemp(savqstr(TEMPLATE)); add_wbsdf("-s", 1); add_wbsdf(sname[c], 1); add_wbsdf(cname[(input_orient>0)<<1 | (output_orient>0)], 1); add_wbsdf(tfname, 1); return(tfname); } /* Start new progress bar */ #define prog_start(s) if (do_prog) fprintf(stderr, "%s: %s...\n", progname, s); else /* Draw progress bar of the appropriate length */ static void prog_show(double frac) { static unsigned call_cnt = 0; static char lastc[] = "-\\|/"; char pbar[256]; int nchars; if (do_prog <= 1) return; if (do_prog > sizeof(pbar)-2) do_prog = sizeof(pbar)-2; if (frac < 0) frac = 0; else if (frac >= 1) frac = .9999; nchars = do_prog*frac; pbar[0] = '\r'; memset(pbar+1, '*', nchars); pbar[nchars+1] = lastc[call_cnt++ & 3]; memset(pbar+2+nchars, '-', do_prog-nchars-1); pbar[do_prog+1] = '\0'; fputs(pbar, stderr); } /* Finish progress bar */ static void prog_done(void) { int n = do_prog; if (n <= 1) return; fputc('\r', stderr); while (n--) fputc(' ', stderr); fputc('\r', stderr); } /* Compute absolute relative difference */ static double abs_diff(double v1, double v0) { if ((v0 < 0) | (v1 < 0)) return(.0); v1 = (v1-v0)*2./(v0+v1+.0001); if (v1 < 0) return(-v1); return(v1); } /* Interpolate and output isotropic BSDF data */ static void eval_isotropic(char *funame) { const int sqres = 1<= 0) { sprintf(cmd, "rttree_reduce%s -h -ff -r 3 -t %f -g %d > %s", recip, pctcull, samp_order, create_component_file(0)); ofp = popen(cmd, "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", progname); exit(1); } SET_FILE_BINARY(ofp); #ifdef getc_unlocked /* avoid lock/unlock overhead */ flockfile(ofp); #endif if (rbf_colorimetry == RBCtristimulus) { double uvcull = 100. - (100.-pctcull)*.25; sprintf(cmd, "rttree_reduce%s -h -ff -r 3 -t %f -g %d > %s", recip, uvcull, samp_order, create_component_file(1)); uvfp[0] = popen(cmd, "w"); sprintf(cmd, "rttree_reduce%s -h -ff -r 3 -t %f -g %d > %s", recip, uvcull, samp_order, create_component_file(2)); uvfp[1] = popen(cmd, "w"); if ((uvfp[0] == NULL) | (uvfp[1] == NULL)) { fprintf(stderr, "%s: cannot open pipes to uv output\n", progname); exit(1); } SET_FILE_BINARY(uvfp[0]); SET_FILE_BINARY(uvfp[1]); #ifdef getc_unlocked flockfile(uvfp[0]); flockfile(uvfp[1]); #endif } } else { ofp = fopen(create_component_file(0), "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create Y output file\n", progname); exit(1); } fputs("{\n", ofp); if (rbf_colorimetry == RBCtristimulus) { uvfp[0] = fopen(create_component_file(1), "w"); uvfp[1] = fopen(create_component_file(2), "w"); if ((uvfp[0] == NULL) | (uvfp[1] == NULL)) { fprintf(stderr, "%s: cannot create uv output file(s)\n", progname); exit(1); } fputs("{\n", uvfp[0]); fputs("{\n", uvfp[1]); } } if (funame != NULL) /* need to assign Dx, Dy, Dz? */ assignD = (fundefined(funame) < 6); val_last = (float *)calloc(sqres, sizeof(float)); if (funame == NULL) sdv_next = (SDValue *)malloc(sizeof(SDValue)*sqres); else val_next = (float *)malloc(sizeof(float)*sqres); /* run through directions */ for (ix = 0; ix < sqres/2; ix++) { const int zipsgn = (ix & 1)*2 - 1; RBFNODE *rbf = NULL; iovec[0] = 2.*sqfact*(ix+.5) - 1.; iovec[1] = zipsgn*sqfact*.5; iovec[2] = input_orient * sqrt(1. - iovec[0]*iovec[0] - iovec[1]*iovec[1]); if (funame == NULL) rbf = advect_rbf(iovec, lobe_lim); /* presample first row */ for (oy = 0; oy < sqres; oy++) { square2disk(iovec+3, .5*sqfact, (oy+.5)*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); if (funame == NULL) { eval_rbfcol(&sdv_next[oy], rbf, iovec+3); } else { if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } val_next[oy] = funvalue(funame, 6, iovec); } } for (ox = 0; ox < sqres; ox++) { /* * Super-sample when we detect a difference from before * or after in this row, above or below. */ for (oy = 0; oy < sqres; oy++) { if (ox < sqres-1) { /* keeping one row ahead... */ square2disk(iovec+3, (ox+1.5)*sqfact, (oy+.5)*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); } if (funame == NULL) { SDValue sdv = sdv_next[oy]; bsdf = sdv.cieY; if (ox < sqres-1) eval_rbfcol(&sdv_next[oy], rbf, iovec+3); if (abs_diff(bsdf, sdv_next[oy].cieY) > ssamp_thresh || (ox && abs_diff(bsdf, val_last[oy]) > ssamp_thresh) || (oy && abs_diff(bsdf, val_last[oy-1]) > ssamp_thresh) || (oy < sqres-1 && abs_diff(bsdf, sdv_next[oy+1].cieY) > ssamp_thresh)) { int ssi; double ssa[2], sum = 0, usum = 0, vsum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 2, (ssi+frandom()) / (double)nssamp); square2disk(iovec+3, (ox+ssa[0])*sqfact, (oy+ssa[1])*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); eval_rbfcol(&sdv, rbf, iovec+3); sum += sdv.cieY; if (rbf_colorimetry == RBCtristimulus) { sdv.cieY /= -2.*sdv.spec.cx + 12.*sdv.spec.cy + 3.; usum += 4.*sdv.spec.cx * sdv.cieY; vsum += 9.*sdv.spec.cy * sdv.cieY; } } bsdf = sum / (double)nssamp; if (rbf_colorimetry == RBCtristimulus) { uv[0] = usum / (sum+FTINY); uv[1] = vsum / (sum+FTINY); } } else if (rbf_colorimetry == RBCtristimulus) { uv[0] = uv[1] = 1. / (-2.*sdv.spec.cx + 12.*sdv.spec.cy + 3.); uv[0] *= 4.*sdv.spec.cx; uv[1] *= 9.*sdv.spec.cy; } } else { bsdf = val_next[oy]; if (ox < sqres-1) { if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } val_next[oy] = funvalue(funame, 6, iovec); } if (abs_diff(bsdf, val_next[oy]) > ssamp_thresh || (ox && abs_diff(bsdf, val_last[oy]) > ssamp_thresh) || (oy && abs_diff(bsdf, val_last[oy-1]) > ssamp_thresh) || (oy < sqres-1 && abs_diff(bsdf, val_next[oy+1]) > ssamp_thresh)) { int ssi; double ssa[4], ssvec[6], sum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 4, (ssi+frandom()) / (double)nssamp); ssvec[0] = 2.*sqfact*(ix+ssa[0]) - 1.; ssvec[1] = zipsgn*sqfact*ssa[1]; ssvec[2] = 1. - ssvec[0]*ssvec[0] - ssvec[1]*ssvec[1]; if (ssvec[2] < .0) { ssvec[1] = 0; ssvec[2] = 1. - ssvec[0]*ssvec[0]; } ssvec[2] = input_orient * sqrt(ssvec[2]); square2disk(ssvec+3, (ox+ssa[2])*sqfact, (oy+ssa[3])*sqfact); ssvec[5] = output_orient * sqrt(1. - ssvec[3]*ssvec[3] - ssvec[4]*ssvec[4]); if (assignD) { varset("Dx", '=', -ssvec[3]); varset("Dy", '=', -ssvec[4]); varset("Dz", '=', -ssvec[5]); ++eclock; } sum += funvalue(funame, 6, ssvec); } bsdf = sum / (double)nssamp; } } if (pctcull >= 0) putbinary(&bsdf, sizeof(bsdf), 1, ofp); else fprintf(ofp, "\t%.3e\n", bsdf); if (rbf_colorimetry == RBCtristimulus) { if (pctcull >= 0) { putbinary(&uv[0], sizeof(*uv), 1, uvfp[0]); putbinary(&uv[1], sizeof(*uv), 1, uvfp[1]); } else { fprintf(uvfp[0], "\t%.3e\n", uv[0]); fprintf(uvfp[1], "\t%.3e\n", uv[1]); } } if (val_last != NULL) val_last[oy] = bsdf; } } if (rbf != NULL) free(rbf); prog_show((ix+1.)*(2.*sqfact)); } prog_done(); if (val_last != NULL) { free(val_last); if (val_next != NULL) free(val_next); if (sdv_next != NULL) free(sdv_next); } if (pctcull >= 0) { /* finish output */ if (pclose(ofp)) { fprintf(stderr, "%s: error running rttree_reduce on Y\n", progname); exit(1); } if (rbf_colorimetry == RBCtristimulus && (pclose(uvfp[0]) || pclose(uvfp[1]))) { fprintf(stderr, "%s: error running rttree_reduce on uv\n", progname); exit(1); } } else { for (ix = sqres*sqres*sqres/2; ix--; ) fputs("\t0\n", ofp); fputs("}\n", ofp); if (fclose(ofp)) { fprintf(stderr, "%s: error writing Y file\n", progname); exit(1); } if (rbf_colorimetry == RBCtristimulus) { for (ix = sqres*sqres*sqres/2; ix--; ) { fputs("\t0\n", uvfp[0]); fputs("\t0\n", uvfp[1]); } fputs("}\n", uvfp[0]); fputs("}\n", uvfp[1]); if (fclose(uvfp[0]) || fclose(uvfp[1])) { fprintf(stderr, "%s: error writing uv file(s)\n", progname); exit(1); } } } } /* Interpolate and output anisotropic BSDF data */ static void eval_anisotropic(char *funame) { const int sqres = 1<= 0) { const char *avgopt = (input_orient>0 ^ output_orient>0) ? "" : recip; sprintf(cmd, "rttree_reduce%s -h -ff -r 4 -t %f -g %d > %s", avgopt, pctcull, samp_order, create_component_file(0)); ofp = popen(cmd, "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", progname); exit(1); } SET_FILE_BINARY(ofp); #ifdef getc_unlocked /* avoid lock/unlock overhead */ flockfile(ofp); #endif if (rbf_colorimetry == RBCtristimulus) { double uvcull = 100. - (100.-pctcull)*.25; sprintf(cmd, "rttree_reduce%s -h -ff -r 4 -t %f -g %d > %s", avgopt, uvcull, samp_order, create_component_file(1)); uvfp[0] = popen(cmd, "w"); sprintf(cmd, "rttree_reduce%s -h -ff -r 4 -t %f -g %d > %s", avgopt, uvcull, samp_order, create_component_file(2)); uvfp[1] = popen(cmd, "w"); if ((uvfp[0] == NULL) | (uvfp[1] == NULL)) { fprintf(stderr, "%s: cannot open pipes to uv output\n", progname); exit(1); } SET_FILE_BINARY(uvfp[0]); SET_FILE_BINARY(uvfp[1]); #ifdef getc_unlocked flockfile(uvfp[0]); flockfile(uvfp[1]); #endif } } else { ofp = fopen(create_component_file(0), "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create Y output file\n", progname); exit(1); } fputs("{\n", ofp); if (rbf_colorimetry == RBCtristimulus) { uvfp[0] = fopen(create_component_file(1), "w"); uvfp[1] = fopen(create_component_file(2), "w"); if ((uvfp[0] == NULL) | (uvfp[1] == NULL)) { fprintf(stderr, "%s: cannot create uv output file(s)\n", progname); exit(1); } fputs("{\n", uvfp[0]); fputs("{\n", uvfp[1]); } } if (funame != NULL) /* need to assign Dx, Dy, Dz? */ assignD = (fundefined(funame) < 6); val_last = (float *)calloc(sqres, sizeof(float)); if (funame == NULL) sdv_next = (SDValue *)malloc(sizeof(SDValue)*sqres); else val_next = (float *)malloc(sizeof(float)*sqres); /* run through directions */ for (ix = 0; ix < sqres; ix++) for (iy = 0; iy < sqres; iy++) { RBFNODE *rbf = NULL; /* Klems reversal */ square2disk(iovec, 1.-(ix+.5)*sqfact, 1.-(iy+.5)*sqfact); iovec[2] = input_orient * sqrt(1. - iovec[0]*iovec[0] - iovec[1]*iovec[1]); if (funame == NULL) rbf = advect_rbf(iovec, lobe_lim); /* presample first row */ for (oy = 0; oy < sqres; oy++) { square2disk(iovec+3, .5*sqfact, (oy+.5)*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); if (funame == NULL) { eval_rbfcol(&sdv_next[oy], rbf, iovec+3); } else { if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } val_next[oy] = funvalue(funame, 6, iovec); } } for (ox = 0; ox < sqres; ox++) { /* * Super-sample when we detect a difference from before * or after in this row, above or below. */ for (oy = 0; oy < sqres; oy++) { if (ox < sqres-1) { /* keeping one row ahead... */ square2disk(iovec+3, (ox+1.5)*sqfact, (oy+.5)*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); } if (funame == NULL) { SDValue sdv = sdv_next[oy]; bsdf = sdv.cieY; if (ox < sqres-1) eval_rbfcol(&sdv_next[oy], rbf, iovec+3); if (abs_diff(bsdf, sdv_next[oy].cieY) > ssamp_thresh || (ox && abs_diff(bsdf, val_last[oy]) > ssamp_thresh) || (oy && abs_diff(bsdf, val_last[oy-1]) > ssamp_thresh) || (oy < sqres-1 && abs_diff(bsdf, sdv_next[oy+1].cieY) > ssamp_thresh)) { int ssi; double ssa[2], sum = 0, usum = 0, vsum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 2, (ssi+frandom()) / (double)nssamp); square2disk(iovec+3, (ox+ssa[0])*sqfact, (oy+ssa[1])*sqfact); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); eval_rbfcol(&sdv, rbf, iovec+3); sum += sdv.cieY; if (rbf_colorimetry == RBCtristimulus) { sdv.cieY /= -2.*sdv.spec.cx + 12.*sdv.spec.cy + 3.; usum += 4.*sdv.spec.cx * sdv.cieY; vsum += 9.*sdv.spec.cy * sdv.cieY; } } bsdf = sum / (double)nssamp; if (rbf_colorimetry == RBCtristimulus) { uv[0] = usum / (sum+FTINY); uv[1] = vsum / (sum+FTINY); } } else if (rbf_colorimetry == RBCtristimulus) { uv[0] = uv[1] = 1. / (-2.*sdv.spec.cx + 12.*sdv.spec.cy + 3.); uv[0] *= 4.*sdv.spec.cx; uv[1] *= 9.*sdv.spec.cy; } } else { bsdf = val_next[oy]; if (ox < sqres-1) { if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } val_next[oy] = funvalue(funame, 6, iovec); } if (abs_diff(bsdf, val_next[oy]) > ssamp_thresh || (ox && abs_diff(bsdf, val_last[oy]) > ssamp_thresh) || (oy && abs_diff(bsdf, val_last[oy-1]) > ssamp_thresh) || (oy < sqres-1 && abs_diff(bsdf, val_next[oy+1]) > ssamp_thresh)) { int ssi; double ssa[4], ssvec[6], sum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 4, (ssi+frandom()) / (double)nssamp); square2disk(ssvec, 1.-(ix+ssa[0])*sqfact, 1.-(iy+ssa[1])*sqfact); ssvec[2] = input_orient * sqrt(1. - ssvec[0]*ssvec[0] - ssvec[1]*ssvec[1]); square2disk(ssvec+3, (ox+ssa[2])*sqfact, (oy+ssa[3])*sqfact); ssvec[5] = output_orient * sqrt(1. - ssvec[3]*ssvec[3] - ssvec[4]*ssvec[4]); if (assignD) { varset("Dx", '=', -ssvec[3]); varset("Dy", '=', -ssvec[4]); varset("Dz", '=', -ssvec[5]); ++eclock; } sum += funvalue(funame, 6, ssvec); } bsdf = sum / (double)nssamp; } } if (pctcull >= 0) putbinary(&bsdf, sizeof(bsdf), 1, ofp); else fprintf(ofp, "\t%.3e\n", bsdf); if (rbf_colorimetry == RBCtristimulus) { if (pctcull >= 0) { putbinary(&uv[0], sizeof(*uv), 1, uvfp[0]); putbinary(&uv[1], sizeof(*uv), 1, uvfp[1]); } else { fprintf(uvfp[0], "\t%.3e\n", uv[0]); fprintf(uvfp[1], "\t%.3e\n", uv[1]); } } if (val_last != NULL) val_last[oy] = bsdf; } } if (rbf != NULL) free(rbf); prog_show((ix*sqres+iy+1.)/(sqres*sqres)); } prog_done(); if (val_last != NULL) { free(val_last); if (val_next != NULL) free(val_next); if (sdv_next != NULL) free(sdv_next); } if (pctcull >= 0) { /* finish output */ if (pclose(ofp)) { fprintf(stderr, "%s: error running rttree_reduce on Y\n", progname); exit(1); } if (rbf_colorimetry == RBCtristimulus && (pclose(uvfp[0]) || pclose(uvfp[1]))) { fprintf(stderr, "%s: error running rttree_reduce on uv\n", progname); exit(1); } } else { fputs("}\n", ofp); if (fclose(ofp)) { fprintf(stderr, "%s: error writing Y file\n", progname); exit(1); } if (rbf_colorimetry == RBCtristimulus) { fputs("}\n", uvfp[0]); fputs("}\n", uvfp[1]); if (fclose(uvfp[0]) || fclose(uvfp[1])) { fprintf(stderr, "%s: error writing uv file(s)\n", progname); exit(1); } } } } #if defined(_WIN32) || defined(_WIN64) /* Execute wrapBSDF command (may never return) */ static int wrap_up(void) { char cmd[32700]; if (bsdf_manuf[0]) { add_wbsdf("-f", 1); strcpy(cmd, "m="); strcpy(cmd+2, bsdf_manuf); add_wbsdf(cmd, 0); } if (bsdf_name[0]) { add_wbsdf("-f", 1); strcpy(cmd, "n="); strcpy(cmd+2, bsdf_name); add_wbsdf(cmd, 0); } if (!convert_commandline(cmd, sizeof(cmd), wrapBSDF)) { fputs(progname, stderr); fputs(": command line too long in wrap_up()\n", stderr); return(1); } return(system(cmd)); } #else /* Execute wrapBSDF command (may never return) */ static int wrap_up(void) { char buf[256]; char *compath = getpath((char *)wrapBSDF[0], getenv("PATH"), X_OK); if (compath == NULL) { fprintf(stderr, "%s: cannot locate %s\n", progname, wrapBSDF[0]); return(1); } if (bsdf_manuf[0]) { add_wbsdf("-f", 1); strcpy(buf, "m="); strcpy(buf+2, bsdf_manuf); add_wbsdf(buf, 0); } if (bsdf_name[0]) { add_wbsdf("-f", 1); strcpy(buf, "n="); strcpy(buf+2, bsdf_name); add_wbsdf(buf, 0); } execv(compath, wrapBSDF); /* successful call never returns */ perror(compath); return(1); } #endif #define HEAD_BUFLEN 10240 static char head_buf[HEAD_BUFLEN]; static int cur_headlen = 0; /* Record header line as comment associated with this SIR input */ static int record2header(char *s) { int len = strlen(s); if (cur_headlen+len >= HEAD_BUFLEN-6) return(0); /* includes EOL */ strcpy(head_buf+cur_headlen, s); cur_headlen += len; #if defined(_WIN32) || defined(_WIN64) if (head_buf[cur_headlen-1] == '\n') head_buf[cur_headlen-1] = '\t'; #endif return(1); } /* Finish off header for this file */ static void done_header(void) { while (cur_headlen > 0 && isspace(head_buf[cur_headlen-1])) --cur_headlen; head_buf[cur_headlen] = '\0'; if (!cur_headlen) return; add_wbsdf("-C", 1); add_wbsdf(head_buf, 0); head_buf[cur_headlen=0] = '\0'; } /* Read in BSDF and interpolate as tensor tree representation */ int main(int argc, char *argv[]) { static const char tfmt[2][4] = {"t4", "t3"}; int dofwd = 0, dobwd = 1; int nsirs = 0; char buf[1024]; int i; progname = argv[0]; esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; esupport &= ~(E_INCHAN|E_OUTCHAN); scompile("PI:3.14159265358979323846", NULL, 0); biggerlib(); strcpy(buf, "File produced by: "); if (convert_commandline(buf+18, sizeof(buf)-18, argv) != NULL) { add_wbsdf("-C", 1); add_wbsdf(buf, 0); } for (i = 1; i < argc; i++) if ((argv[i][0] == '-') | (argv[i][0] == '+')) { switch (argv[i][1]) { /* get option */ case 'e': scompile(argv[++i], NULL, 0); if (single_plane_incident < 0) single_plane_incident = 0; break; case 'f': if ((argv[i][0] == '-') & !argv[i][2]) { if (strchr(argv[++i], '=') != NULL) { add_wbsdf("-f", 1); add_wbsdf(argv[i], 1); } else { char *fpath = getpath(argv[i], getrlibpath(), 0); if (fpath == NULL) { fprintf(stderr, "%s: cannot find file '%s'\n", argv[0], argv[i]); return(1); } fcompile(fpath); if (single_plane_incident < 0) single_plane_incident = 0; } } else dofwd = (argv[i][0] == '+'); break; case 'a': recip = (argv[i][0] == '+') ? " -a" : ""; break; case 'b': dobwd = (argv[i][0] == '+'); break; case 'n': nssamp = atoi(argv[++i]); if (nssamp <= 0) goto userr; break; case 's': ssamp_thresh = atof(argv[++i]); if (ssamp_thresh <= FTINY) goto userr; break; case 't': switch (argv[i][2]) { case '3': single_plane_incident = 1; break; case '4': single_plane_incident = 0; break; case '\0': pctcull = atof(argv[++i]); break; default: goto userr; } break; case 'g': samp_order = atoi(argv[++i]); break; case 'l': lobe_lim = atoi(argv[++i]); break; case 'p': do_prog = atoi(argv[i]+2); break; case 'W': add_wbsdf(argv[i], 1); break; case 'u': case 'C': add_wbsdf(argv[i], 1); add_wbsdf(argv[++i], 1); break; default: goto userr; } } else { /* input SIR or function */ FILE *fpin; if (!nsirs & (single_plane_incident >= 0)) break; /* must be a function */ if (nsirs >= 4) { fprintf(stderr, "At most 4 SIR inputs supported\n"); goto userr; } fpin = fopen(argv[i], "rb"); /* open SIR file */ if (fpin == NULL) { fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", progname, argv[i]); return(1); } sprintf(buf, "%s:\n", argv[i]); record2header(buf); sir_headshare = &record2header; if (!load_bsdf_rep(fpin)) return(1); fclose(fpin); done_header(); sprintf(buf, "Interpolating component '%s'", argv[i]); prog_start(buf); if (!nsirs++) { add_wbsdf("-a", 1); add_wbsdf(tfmt[single_plane_incident], 1); } if (single_plane_incident) eval_isotropic(NULL); else eval_anisotropic(NULL); } if (i < argc) { /* function-based BSDF? */ void (*evf)(char *s) = single_plane_incident ? eval_isotropic : eval_anisotropic; if (i != argc-1 || fundefined(argv[i]) < 3) { fprintf(stderr, "%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n", progname); fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n"); goto userr; } ++eclock; add_wbsdf("-a", 1); add_wbsdf(tfmt[single_plane_incident], 1); if (dofwd) { input_orient = -1; output_orient = -1; prog_start("Evaluating outside reflectance"); (*evf)(argv[i]); output_orient = 1; prog_start("Evaluating outside->inside transmission"); (*evf)(argv[i]); } if (dobwd) { input_orient = 1; output_orient = 1; prog_start("Evaluating inside reflectance"); (*evf)(argv[i]); output_orient = -1; prog_start("Evaluating inside->outside transmission"); (*evf)(argv[i]); } } else if (!nsirs) { /* else load SIR from stdin? */ record2header(":\n"); sir_headshare = &record2header; if (!load_bsdf_rep(stdin)) return(1); done_header(); prog_start("Interpolating from standard input"); add_wbsdf("-a", 1); add_wbsdf(tfmt[single_plane_incident], 1); if (single_plane_incident) /* resample dist. */ eval_isotropic(NULL); else eval_anisotropic(NULL); } return(wrap_up()); /* call wrapBSDF */ userr: fprintf(stderr, "Usage: %s [{+|-}a][-g Nlog2][-t pctcull][-n nss][-s thresh][-l maxlobes][bsdf.sir ..] > bsdf.xml\n", progname); fprintf(stderr, " or: %s -t{3|4} [{+|-}a][-g Nlog2][-t pctcull][-n nss][-s thresh][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n", progname); return(1); }