1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdf2ttree.c,v 2.28 2014/03/24 03:50:28 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Load measured BSDF interpolant and write out as XML file with tensor tree. |
6 |
* |
7 |
* G. Ward |
8 |
*/ |
9 |
|
10 |
#define _USE_MATH_DEFINES |
11 |
#include <stdio.h> |
12 |
#include <stdlib.h> |
13 |
#include <math.h> |
14 |
#include "random.h" |
15 |
#include "platform.h" |
16 |
#include "rtprocess.h" |
17 |
#include "calcomp.h" |
18 |
#include "bsdfrep.h" |
19 |
/* global argv[0] */ |
20 |
char *progname; |
21 |
/* percentage to cull (<0 to turn off) */ |
22 |
double pctcull = 90.; |
23 |
/* sampling order */ |
24 |
int samp_order = 6; |
25 |
/* super-sampling threshold */ |
26 |
const double ssamp_thresh = 0.35; |
27 |
/* number of super-samples */ |
28 |
#ifndef NSSAMP |
29 |
#define NSSAMP 100 |
30 |
#endif |
31 |
/* limit on number of RBF lobes */ |
32 |
static int lobe_lim = 15000; |
33 |
/* progress bar length */ |
34 |
static int do_prog = 79; |
35 |
|
36 |
|
37 |
/* Start new progress bar */ |
38 |
#define prog_start(s) if (do_prog) fprintf(stderr, "%s: %s...\n", progname, s); else |
39 |
|
40 |
/* Draw progress bar of the appropriate length */ |
41 |
static void |
42 |
prog_show(double frac) |
43 |
{ |
44 |
char pbar[256]; |
45 |
int nchars; |
46 |
|
47 |
if (do_prog <= 0) return; |
48 |
if (do_prog > sizeof(pbar)-2) |
49 |
do_prog = sizeof(pbar)-2; |
50 |
if (frac < 0) frac = 0; |
51 |
else if (frac > 1) frac = 1; |
52 |
nchars = do_prog*frac + .5; |
53 |
pbar[0] = '\r'; |
54 |
memset(pbar+1, '*', nchars); |
55 |
memset(pbar+1+nchars, '-', do_prog-nchars); |
56 |
pbar[do_prog+1] = '\0'; |
57 |
fputs(pbar, stderr); |
58 |
} |
59 |
|
60 |
/* Finish progress bar */ |
61 |
static void |
62 |
prog_done(void) |
63 |
{ |
64 |
int n = do_prog; |
65 |
|
66 |
if (n <= 1) return; |
67 |
fputc('\r', stderr); |
68 |
while (n--) |
69 |
fputc(' ', stderr); |
70 |
fputc('\r', stderr); |
71 |
} |
72 |
|
73 |
/* Output XML prologue to stdout */ |
74 |
static void |
75 |
xml_prologue(int ac, char *av[]) |
76 |
{ |
77 |
puts("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); |
78 |
puts("<WindowElement xmlns=\"http://windows.lbl.gov\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://windows.lbl.gov/BSDF-v1.4.xsd\">"); |
79 |
fputs("<!-- File produced by:", stdout); |
80 |
while (ac-- > 0) { |
81 |
fputc(' ', stdout); |
82 |
fputs(*av++, stdout); |
83 |
} |
84 |
puts(" -->"); |
85 |
puts("<WindowElementType>System</WindowElementType>"); |
86 |
puts("<FileType>BSDF</FileType>"); |
87 |
puts("<Optical>"); |
88 |
puts("<Layer>"); |
89 |
puts("\t<Material>"); |
90 |
printf("\t\t<Name>%s</Name>\n", bsdf_name[0] ? bsdf_name : "Unknown"); |
91 |
printf("\t\t<Manufacturer>%s</Manufacturer>\n", |
92 |
bsdf_manuf[0] ? bsdf_manuf : "Unknown"); |
93 |
puts("\t\t<DeviceType>Other</DeviceType>"); |
94 |
puts("\t</Material>"); |
95 |
puts("\t<DataDefinition>"); |
96 |
printf("\t\t<IncidentDataStructure>TensorTree%c</IncidentDataStructure>\n", |
97 |
single_plane_incident ? '3' : '4'); |
98 |
puts("\t</DataDefinition>"); |
99 |
} |
100 |
|
101 |
/* Output XML data prologue to stdout */ |
102 |
static void |
103 |
data_prologue() |
104 |
{ |
105 |
static const char *bsdf_type[4] = { |
106 |
"Reflection Front", |
107 |
"Transmission Front", |
108 |
"Transmission Back", |
109 |
"Reflection Back" |
110 |
}; |
111 |
|
112 |
puts("\t<WavelengthData>"); |
113 |
puts("\t\t<LayerNumber>System</LayerNumber>"); |
114 |
puts("\t\t<Wavelength unit=\"Integral\">Visible</Wavelength>"); |
115 |
puts("\t\t<SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>"); |
116 |
puts("\t\t<DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>"); |
117 |
puts("\t\t<WavelengthDataBlock>"); |
118 |
printf("\t\t\t<WavelengthDataDirection>%s</WavelengthDataDirection>\n", |
119 |
bsdf_type[(input_orient>0)<<1 | (output_orient>0)]); |
120 |
puts("\t\t\t<AngleBasis>LBNL/Shirley-Chiu</AngleBasis>"); |
121 |
puts("\t\t\t<ScatteringDataType>BTDF</ScatteringDataType>"); |
122 |
puts("\t\t\t<ScatteringData>"); |
123 |
} |
124 |
|
125 |
/* Output XML data epilogue to stdout */ |
126 |
static void |
127 |
data_epilogue(void) |
128 |
{ |
129 |
puts("\t\t\t</ScatteringData>"); |
130 |
puts("\t\t</WavelengthDataBlock>"); |
131 |
puts("\t</WavelengthData>"); |
132 |
} |
133 |
|
134 |
/* Output XML epilogue to stdout */ |
135 |
static void |
136 |
xml_epilogue(void) |
137 |
{ |
138 |
puts("</Layer>"); |
139 |
puts("</Optical>"); |
140 |
puts("</WindowElement>"); |
141 |
} |
142 |
|
143 |
/* Compute absolute relative difference */ |
144 |
static double |
145 |
abs_diff(double v1, double v0) |
146 |
{ |
147 |
if ((v0 < 0) | (v1 < 0)) |
148 |
return(.0); |
149 |
v1 = (v1-v0)*2./(v0+v1+.0001); |
150 |
if (v1 < 0) |
151 |
return(-v1); |
152 |
return(v1); |
153 |
} |
154 |
|
155 |
/* Interpolate and output isotropic BSDF data */ |
156 |
static void |
157 |
eval_isotropic(char *funame) |
158 |
{ |
159 |
const int sqres = 1<<samp_order; |
160 |
FILE *ofp = NULL; |
161 |
int assignD = 0; |
162 |
char cmd[128]; |
163 |
int ix, ox, oy; |
164 |
double iovec[6]; |
165 |
float bsdf; |
166 |
|
167 |
data_prologue(); /* begin output */ |
168 |
if (pctcull >= 0) { |
169 |
sprintf(cmd, "rttree_reduce -a -h -ff -r 3 -t %f -g %d", |
170 |
pctcull, samp_order); |
171 |
fflush(stdout); |
172 |
ofp = popen(cmd, "w"); |
173 |
if (ofp == NULL) { |
174 |
fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", |
175 |
progname); |
176 |
exit(1); |
177 |
} |
178 |
SET_FILE_BINARY(ofp); |
179 |
#ifdef getc_unlocked /* avoid lock/unlock overhead */ |
180 |
flockfile(ofp); |
181 |
#endif |
182 |
} else |
183 |
fputs("{\n", stdout); |
184 |
/* need to assign Dx, Dy, Dz? */ |
185 |
if (funame != NULL) |
186 |
assignD = (fundefined(funame) < 6); |
187 |
/* run through directions */ |
188 |
for (ix = 0; ix < sqres/2; ix++) { |
189 |
RBFNODE *rbf = NULL; |
190 |
iovec[0] = 2.*(ix+.5)/sqres - 1.; |
191 |
iovec[1] = .0; |
192 |
iovec[2] = input_orient * sqrt(1. - iovec[0]*iovec[0]); |
193 |
if (funame == NULL) |
194 |
rbf = advect_rbf(iovec, lobe_lim); |
195 |
for (ox = 0; ox < sqres; ox++) { |
196 |
float last_bsdf = -1; |
197 |
for (oy = 0; oy < sqres; oy++) { |
198 |
SDsquare2disk(iovec+3, (ox+.5)/sqres, (oy+.5)/sqres); |
199 |
iovec[5] = output_orient * |
200 |
sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); |
201 |
if (funame == NULL) |
202 |
bsdf = eval_rbfrep(rbf, iovec+3); |
203 |
else { |
204 |
if (assignD) { |
205 |
varset("Dx", '=', -iovec[3]); |
206 |
varset("Dy", '=', -iovec[4]); |
207 |
varset("Dz", '=', -iovec[5]); |
208 |
++eclock; |
209 |
} |
210 |
bsdf = funvalue(funame, 6, iovec); |
211 |
#if (NSSAMP > 0) |
212 |
if (abs_diff(bsdf, last_bsdf) > ssamp_thresh) { |
213 |
int ssi; |
214 |
double ssa[3], ssvec[6], sum = 0; |
215 |
/* super-sample voxel */ |
216 |
for (ssi = NSSAMP; ssi--; ) { |
217 |
SDmultiSamp(ssa, 3, (ssi+frandom()) * |
218 |
(1./NSSAMP)); |
219 |
ssvec[0] = 2.*(ix+ssa[0])/sqres - 1.; |
220 |
ssvec[1] = .0; |
221 |
ssvec[2] = input_orient * |
222 |
sqrt(1. - ssvec[0]*ssvec[0]); |
223 |
SDsquare2disk(ssvec+3, (ox+ssa[1])/sqres, |
224 |
(oy+ssa[2])/sqres); |
225 |
ssvec[5] = output_orient * |
226 |
sqrt(1. - ssvec[3]*ssvec[3] - |
227 |
ssvec[4]*ssvec[4]); |
228 |
if (assignD) { |
229 |
varset("Dx", '=', -ssvec[3]); |
230 |
varset("Dy", '=', -ssvec[4]); |
231 |
varset("Dz", '=', -ssvec[5]); |
232 |
++eclock; |
233 |
} |
234 |
sum += funvalue(funame, 6, ssvec); |
235 |
} |
236 |
bsdf = sum/NSSAMP; |
237 |
} |
238 |
#endif |
239 |
} |
240 |
if (pctcull >= 0) |
241 |
fwrite(&bsdf, sizeof(bsdf), 1, ofp); |
242 |
else |
243 |
printf("\t%.3e\n", bsdf); |
244 |
last_bsdf = bsdf; |
245 |
} |
246 |
} |
247 |
if (rbf != NULL) |
248 |
free(rbf); |
249 |
prog_show((ix+1.)*(2./sqres)); |
250 |
} |
251 |
if (pctcull >= 0) { /* finish output */ |
252 |
if (pclose(ofp)) { |
253 |
fprintf(stderr, "%s: error running '%s'\n", |
254 |
progname, cmd); |
255 |
exit(1); |
256 |
} |
257 |
} else { |
258 |
for (ix = sqres*sqres*sqres/2; ix--; ) |
259 |
fputs("\t0\n", stdout); |
260 |
fputs("}\n", stdout); |
261 |
} |
262 |
data_epilogue(); |
263 |
prog_done(); |
264 |
} |
265 |
|
266 |
/* Interpolate and output anisotropic BSDF data */ |
267 |
static void |
268 |
eval_anisotropic(char *funame) |
269 |
{ |
270 |
const int sqres = 1<<samp_order; |
271 |
FILE *ofp = NULL; |
272 |
int assignD = 0; |
273 |
char cmd[128]; |
274 |
int ix, iy, ox, oy; |
275 |
double iovec[6]; |
276 |
float bsdf; |
277 |
|
278 |
data_prologue(); /* begin output */ |
279 |
if (pctcull >= 0) { |
280 |
sprintf(cmd, "rttree_reduce%s -h -ff -r 4 -t %f -g %d", |
281 |
(input_orient>0 ^ output_orient>0) ? "" : " -a", |
282 |
pctcull, samp_order); |
283 |
fflush(stdout); |
284 |
ofp = popen(cmd, "w"); |
285 |
if (ofp == NULL) { |
286 |
fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", |
287 |
progname); |
288 |
exit(1); |
289 |
} |
290 |
SET_FILE_BINARY(ofp); |
291 |
#ifdef getc_unlocked /* avoid lock/unlock overhead */ |
292 |
flockfile(ofp); |
293 |
#endif |
294 |
} else |
295 |
fputs("{\n", stdout); |
296 |
/* need to assign Dx, Dy, Dz? */ |
297 |
if (funame != NULL) |
298 |
assignD = (fundefined(funame) < 6); |
299 |
/* run through directions */ |
300 |
for (ix = 0; ix < sqres; ix++) |
301 |
for (iy = 0; iy < sqres; iy++) { |
302 |
RBFNODE *rbf = NULL; /* Klems reversal */ |
303 |
SDsquare2disk(iovec, 1.-(ix+.5)/sqres, 1.-(iy+.5)/sqres); |
304 |
iovec[2] = input_orient * |
305 |
sqrt(1. - iovec[0]*iovec[0] - iovec[1]*iovec[1]); |
306 |
if (funame == NULL) |
307 |
rbf = advect_rbf(iovec, lobe_lim); |
308 |
for (ox = 0; ox < sqres; ox++) { |
309 |
float last_bsdf = -1; |
310 |
for (oy = 0; oy < sqres; oy++) { |
311 |
SDsquare2disk(iovec+3, (ox+.5)/sqres, (oy+.5)/sqres); |
312 |
iovec[5] = output_orient * |
313 |
sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); |
314 |
if (funame == NULL) |
315 |
bsdf = eval_rbfrep(rbf, iovec+3); |
316 |
else { |
317 |
if (assignD) { |
318 |
varset("Dx", '=', -iovec[3]); |
319 |
varset("Dy", '=', -iovec[4]); |
320 |
varset("Dz", '=', -iovec[5]); |
321 |
++eclock; |
322 |
} |
323 |
bsdf = funvalue(funame, 6, iovec); |
324 |
#if (NSSAMP > 0) |
325 |
if (abs_diff(bsdf, last_bsdf) > ssamp_thresh) { |
326 |
int ssi; |
327 |
double ssa[4], ssvec[6], sum = 0; |
328 |
/* super-sample voxel */ |
329 |
for (ssi = NSSAMP; ssi--; ) { |
330 |
SDmultiSamp(ssa, 4, (ssi+frandom()) * |
331 |
(1./NSSAMP)); |
332 |
SDsquare2disk(ssvec, 1.-(ix+ssa[0])/sqres, |
333 |
1.-(iy+ssa[1])/sqres); |
334 |
ssvec[2] = input_orient * |
335 |
sqrt(1. - ssvec[0]*ssvec[0] - |
336 |
ssvec[1]*ssvec[1]); |
337 |
SDsquare2disk(ssvec+3, (ox+ssa[2])/sqres, |
338 |
(oy+ssa[3])/sqres); |
339 |
ssvec[5] = output_orient * |
340 |
sqrt(1. - ssvec[3]*ssvec[3] - |
341 |
ssvec[4]*ssvec[4]); |
342 |
if (assignD) { |
343 |
varset("Dx", '=', -ssvec[3]); |
344 |
varset("Dy", '=', -ssvec[4]); |
345 |
varset("Dz", '=', -ssvec[5]); |
346 |
++eclock; |
347 |
} |
348 |
sum += funvalue(funame, 6, ssvec); |
349 |
} |
350 |
bsdf = sum/NSSAMP; |
351 |
} |
352 |
#endif |
353 |
} |
354 |
if (pctcull >= 0) |
355 |
fwrite(&bsdf, sizeof(bsdf), 1, ofp); |
356 |
else |
357 |
printf("\t%.3e\n", bsdf); |
358 |
last_bsdf = bsdf; |
359 |
} |
360 |
} |
361 |
if (rbf != NULL) |
362 |
free(rbf); |
363 |
prog_show((ix*sqres+iy+1.)/(sqres*sqres)); |
364 |
} |
365 |
if (pctcull >= 0) { /* finish output */ |
366 |
if (pclose(ofp)) { |
367 |
fprintf(stderr, "%s: error running '%s'\n", |
368 |
progname, cmd); |
369 |
exit(1); |
370 |
} |
371 |
} else |
372 |
fputs("}\n", stdout); |
373 |
data_epilogue(); |
374 |
prog_done(); |
375 |
} |
376 |
|
377 |
/* Read in BSDF and interpolate as tensor tree representation */ |
378 |
int |
379 |
main(int argc, char *argv[]) |
380 |
{ |
381 |
int dofwd = 0, dobwd = 1; |
382 |
int i, na; |
383 |
|
384 |
progname = argv[0]; |
385 |
esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; |
386 |
esupport &= ~(E_INCHAN|E_OUTCHAN); |
387 |
scompile("PI:3.14159265358979323846", NULL, 0); |
388 |
biggerlib(); |
389 |
for (i = 1; i < argc-1 && (argv[i][0] == '-') | (argv[i][0] == '+'); i++) |
390 |
switch (argv[i][1]) { /* get options */ |
391 |
case 'e': |
392 |
scompile(argv[++i], NULL, 0); |
393 |
break; |
394 |
case 'f': |
395 |
if (!argv[i][2]) |
396 |
fcompile(argv[++i]); |
397 |
else |
398 |
dofwd = (argv[i][0] == '+'); |
399 |
break; |
400 |
case 'b': |
401 |
dobwd = (argv[i][0] == '+'); |
402 |
break; |
403 |
case 't': |
404 |
switch (argv[i][2]) { |
405 |
case '3': |
406 |
single_plane_incident = 1; |
407 |
break; |
408 |
case '4': |
409 |
single_plane_incident = 0; |
410 |
break; |
411 |
case '\0': |
412 |
pctcull = atof(argv[++i]); |
413 |
break; |
414 |
default: |
415 |
goto userr; |
416 |
} |
417 |
break; |
418 |
case 'g': |
419 |
samp_order = atoi(argv[++i]); |
420 |
break; |
421 |
case 'l': |
422 |
lobe_lim = atoi(argv[++i]); |
423 |
break; |
424 |
case 'p': |
425 |
do_prog = atoi(argv[i]+2); |
426 |
break; |
427 |
default: |
428 |
goto userr; |
429 |
} |
430 |
if (single_plane_incident >= 0) { /* function-based BSDF? */ |
431 |
void (*evf)(char *s) = single_plane_incident ? |
432 |
&eval_isotropic : &eval_anisotropic; |
433 |
if (i != argc-1 || fundefined(argv[i]) < 3) { |
434 |
fprintf(stderr, |
435 |
"%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n", |
436 |
progname); |
437 |
fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n"); |
438 |
goto userr; |
439 |
} |
440 |
++eclock; |
441 |
xml_prologue(argc, argv); /* start XML output */ |
442 |
if (dofwd) { |
443 |
input_orient = -1; |
444 |
output_orient = -1; |
445 |
prog_start("Evaluating outside reflectance"); |
446 |
(*evf)(argv[i]); |
447 |
output_orient = 1; |
448 |
prog_start("Evaluating outside->inside transmission"); |
449 |
(*evf)(argv[i]); |
450 |
} |
451 |
if (dobwd) { |
452 |
input_orient = 1; |
453 |
output_orient = 1; |
454 |
prog_start("Evaluating inside reflectance"); |
455 |
(*evf)(argv[i]); |
456 |
output_orient = -1; |
457 |
prog_start("Evaluating inside->outside transmission"); |
458 |
(*evf)(argv[i]); |
459 |
} |
460 |
xml_epilogue(); /* finish XML output & exit */ |
461 |
return(0); |
462 |
} |
463 |
if (i < argc) { /* open input files if given */ |
464 |
int nbsdf = 0; |
465 |
for ( ; i < argc; i++) { /* interpolate each component */ |
466 |
char pbuf[256]; |
467 |
FILE *fpin = fopen(argv[i], "rb"); |
468 |
if (fpin == NULL) { |
469 |
fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", |
470 |
progname, argv[i]); |
471 |
return(1); |
472 |
} |
473 |
if (!load_bsdf_rep(fpin)) |
474 |
return(1); |
475 |
fclose(fpin); |
476 |
if (!nbsdf++) /* start XML on first dist. */ |
477 |
xml_prologue(argc, argv); |
478 |
sprintf(pbuf, "Interpolating component '%s'", argv[i]); |
479 |
prog_start(pbuf); |
480 |
if (single_plane_incident) |
481 |
eval_isotropic(NULL); |
482 |
else |
483 |
eval_anisotropic(NULL); |
484 |
} |
485 |
xml_epilogue(); /* finish XML output & exit */ |
486 |
return(0); |
487 |
} |
488 |
SET_FILE_BINARY(stdin); /* load from stdin */ |
489 |
if (!load_bsdf_rep(stdin)) |
490 |
return(1); |
491 |
xml_prologue(argc, argv); /* start XML output */ |
492 |
prog_start("Interpolating from standard input"); |
493 |
if (single_plane_incident) /* resample dist. */ |
494 |
eval_isotropic(NULL); |
495 |
else |
496 |
eval_anisotropic(NULL); |
497 |
xml_epilogue(); /* finish XML output & exit */ |
498 |
return(0); |
499 |
userr: |
500 |
fprintf(stderr, |
501 |
"Usage: %s [-g Nlog2][-t pctcull][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", |
502 |
progname); |
503 |
fprintf(stderr, |
504 |
" or: %s -t{3|4} [-g Nlog2][-t pctcull][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n", |
505 |
progname); |
506 |
return(1); |
507 |
} |