#ifndef lint static const char RCSid[] = "$Id: bsdf2ttree.c,v 2.19 2013/10/03 17:01:02 greg Exp $"; #endif /* * Load measured BSDF interpolant and write out as XML file with tensor tree. * * G. Ward */ #define _USE_MATH_DEFINES #include #include #include #include "platform.h" #include "calcomp.h" #include "bsdfrep.h" /* global argv[0] */ char *progname; /* percentage to cull (<0 to turn off) */ double pctcull = 90.; /* sampling order */ int samp_order = 6; /* super-sampling threshold */ const double ssamp_thresh = 0.35; /* number of super-samples */ const int nssamp = 100; /* limit on number of RBF lobes */ static int lobe_lim = 15000; /* Output XML prologue to stdout */ static void xml_prologue(int ac, char *av[]) { puts(""); puts(""); fputs(""); puts("System"); puts("BSDF"); puts(""); puts(""); puts("\t"); puts("\t\tName"); puts("\t\tManufacturer"); puts("\t\tOther"); puts("\t"); puts("\t"); printf("\t\tTensorTree%c\n", single_plane_incident ? '3' : '4'); puts("\t"); } /* Output XML data prologue to stdout */ static void data_prologue() { static const char *bsdf_type[4] = { "Reflection Front", "Transmission Front", "Transmission Back", "Reflection Back" }; puts("\t"); puts("\t\tSystem"); puts("\t\tVisible"); puts("\t\tCIE Illuminant D65 1nm.ssp"); puts("\t\tASTM E308 1931 Y.dsp"); puts("\t\t"); printf("\t\t\t%s\n", bsdf_type[(input_orient>0)<<1 | (output_orient>0)]); puts("\t\t\tLBNL/Shirley-Chiu"); puts("\t\t\tBTDF"); puts("\t\t\t"); } /* Output XML data epilogue to stdout */ static void data_epilogue(void) { puts("\t\t\t"); puts("\t\t"); puts("\t"); } /* Output XML epilogue to stdout */ static void xml_epilogue(void) { puts(""); puts(""); puts(""); } /* Compute absolute relative difference */ static double abs_diff(double v1, double v0) { if ((v0 < 0) | (v1 < 0)) return(.0); v1 = (v1-v0)*2./(v0+v1+.0001); if (v1 < 0) return(-v1); return(v1); } /* Interpolate and output isotropic BSDF data */ static void eval_isotropic(char *funame) { const int sqres = 1<= 0) { sprintf(cmd, "rttree_reduce%s -h -ff -r 3 -t %f -g %d", (input_orient>0 ^ output_orient>0) ? "" : " -a", pctcull, samp_order); fflush(stdout); ofp = popen(cmd, "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", progname); exit(1); } SET_FILE_BINARY(ofp); } else fputs("{\n", stdout); /* need to assign Dx, Dy, Dz? */ if (funame != NULL) assignD = (fundefined(funame) < 6); /* run through directions */ for (ix = 0; ix < sqres/2; ix++) { RBFNODE *rbf = NULL; iovec[0] = 2.*(ix+.5)/sqres - 1.; iovec[1] = .0; iovec[2] = input_orient * sqrt(1. - iovec[0]*iovec[0]); if (funame == NULL) rbf = advect_rbf(iovec, lobe_lim); for (ox = 0; ox < sqres; ox++) { float last_bsdf = -1; for (oy = 0; oy < sqres; oy++) { SDsquare2disk(iovec+3, (ox+.5)/sqres, (oy+.5)/sqres); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); if (funame == NULL) bsdf = eval_rbfrep(rbf, iovec+3) * output_orient/iovec[5]; else { double ssa[3], ssvec[6], sum; int ssi; if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } bsdf = funvalue(funame, 6, iovec); if (abs_diff(bsdf, last_bsdf) > ssamp_thresh) { sum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 3, (ssi+drand48())/nssamp); ssvec[0] = 2.*(ix+ssa[0])/sqres - 1.; ssvec[1] = .0; ssvec[2] = input_orient * sqrt(1. - ssvec[0]*ssvec[0]); SDsquare2disk(ssvec+3, (ox+ssa[1])/sqres, (oy+ssa[2])/sqres); ssvec[5] = output_orient * sqrt(1. - ssvec[3]*ssvec[3] - ssvec[4]*ssvec[4]); if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } sum += funvalue(funame, 6, ssvec); } bsdf = sum/nssamp; } } if (pctcull >= 0) fwrite(&bsdf, sizeof(bsdf), 1, ofp); else printf("\t%.3e\n", bsdf); last_bsdf = bsdf; } } if (rbf != NULL) free(rbf); } if (pctcull >= 0) { /* finish output */ if (pclose(ofp)) { fprintf(stderr, "%s: error running '%s'\n", progname, cmd); exit(1); } } else { for (ix = sqres*sqres*sqres/2; ix--; ) fputs("\t0\n", stdout); fputs("}\n", stdout); } data_epilogue(); } /* Interpolate and output anisotropic BSDF data */ static void eval_anisotropic(char *funame) { const int sqres = 1<= 0) { sprintf(cmd, "rttree_reduce%s -h -ff -r 4 -t %f -g %d", (input_orient>0 ^ output_orient>0) ? "" : " -a", pctcull, samp_order); fflush(stdout); ofp = popen(cmd, "w"); if (ofp == NULL) { fprintf(stderr, "%s: cannot create pipe to rttree_reduce\n", progname); exit(1); } } else fputs("{\n", stdout); /* need to assign Dx, Dy, Dz? */ if (funame != NULL) assignD = (fundefined(funame) < 6); /* run through directions */ for (ix = 0; ix < sqres; ix++) for (iy = 0; iy < sqres; iy++) { RBFNODE *rbf = NULL; /* Klems reversal */ SDsquare2disk(iovec, 1.-(ix+.5)/sqres, 1.-(iy+.5)/sqres); iovec[2] = input_orient * sqrt(1. - iovec[0]*iovec[0] - iovec[1]*iovec[1]); if (funame == NULL) rbf = advect_rbf(iovec, lobe_lim); for (ox = 0; ox < sqres; ox++) { float last_bsdf = -1; for (oy = 0; oy < sqres; oy++) { SDsquare2disk(iovec+3, (ox+.5)/sqres, (oy+.5)/sqres); iovec[5] = output_orient * sqrt(1. - iovec[3]*iovec[3] - iovec[4]*iovec[4]); if (funame == NULL) bsdf = eval_rbfrep(rbf, iovec+3) * output_orient/iovec[5]; else { double ssa[4], ssvec[6], sum; int ssi; if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } bsdf = funvalue(funame, 6, iovec); if (abs_diff(bsdf, last_bsdf) > ssamp_thresh) { sum = 0; /* super-sample voxel */ for (ssi = nssamp; ssi--; ) { SDmultiSamp(ssa, 4, (ssi+drand48())/nssamp); SDsquare2disk(ssvec, 1.-(ix+ssa[0])/sqres, 1.-(iy+ssa[1])/sqres); ssvec[2] = output_orient * sqrt(1. - ssvec[0]*ssvec[0] - ssvec[1]*ssvec[1]); SDsquare2disk(ssvec+3, (ox+ssa[2])/sqres, (oy+ssa[3])/sqres); ssvec[5] = output_orient * sqrt(1. - ssvec[3]*ssvec[3] - ssvec[4]*ssvec[4]); if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } sum += funvalue(funame, 6, ssvec); } bsdf = sum/nssamp; } } if (pctcull >= 0) fwrite(&bsdf, sizeof(bsdf), 1, ofp); else printf("\t%.3e\n", bsdf); last_bsdf = bsdf; } } if (rbf != NULL) free(rbf); } if (pctcull >= 0) { /* finish output */ if (pclose(ofp)) { fprintf(stderr, "%s: error running '%s'\n", progname, cmd); exit(1); } } else fputs("}\n", stdout); data_epilogue(); } /* Read in BSDF and interpolate as tensor tree representation */ int main(int argc, char *argv[]) { int dofwd = 0, dobwd = 1; int i, na; progname = argv[0]; esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; esupport &= ~(E_INCHAN|E_OUTCHAN); scompile("PI:3.14159265358979323846", NULL, 0); biggerlib(); for (i = 1; i < argc-1 && (argv[i][0] == '-') | (argv[i][0] == '+'); i++) switch (argv[i][1]) { /* get options */ case 'e': scompile(argv[++i], NULL, 0); break; case 'f': if (!argv[i][2]) fcompile(argv[++i]); else dofwd = (argv[i][0] == '+'); break; case 'b': dobwd = (argv[i][0] == '+'); break; case 't': switch (argv[i][2]) { case '3': single_plane_incident = 1; break; case '4': single_plane_incident = 0; break; case '\0': pctcull = atof(argv[++i]); break; default: goto userr; } break; case 'g': samp_order = atoi(argv[++i]); break; case 'l': lobe_lim = atoi(argv[++i]); break; default: goto userr; } if (single_plane_incident >= 0) { /* function-based BSDF? */ void (*evf)(char *s) = single_plane_incident ? &eval_isotropic : &eval_anisotropic; if (i != argc-1 || fundefined(argv[i]) < 3) { fprintf(stderr, "%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n", progname); fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n", progname); goto userr; } ++eclock; xml_prologue(argc, argv); /* start XML output */ if (dofwd) { input_orient = -1; output_orient = -1; (*evf)(argv[i]); /* outside reflectance */ output_orient = 1; (*evf)(argv[i]); /* outside -> inside */ } if (dobwd) { input_orient = 1; output_orient = 1; (*evf)(argv[i]); /* inside reflectance */ output_orient = -1; (*evf)(argv[i]); /* inside -> outside */ } xml_epilogue(); /* finish XML output & exit */ return(0); } if (i < argc) { /* open input files if given */ int nbsdf = 0; for ( ; i < argc; i++) { /* interpolate each component */ FILE *fpin = fopen(argv[i], "rb"); if (fpin == NULL) { fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", progname, argv[i]); return(1); } if (!load_bsdf_rep(fpin)) return(1); fclose(fpin); if (!nbsdf++) /* start XML on first dist. */ xml_prologue(argc, argv); if (single_plane_incident) eval_isotropic(NULL); else eval_anisotropic(NULL); } xml_epilogue(); /* finish XML output & exit */ return(0); } SET_FILE_BINARY(stdin); /* load from stdin */ if (!load_bsdf_rep(stdin)) return(1); xml_prologue(argc, argv); /* start XML output */ if (single_plane_incident) /* resample dist. */ eval_isotropic(NULL); else eval_anisotropic(NULL); xml_epilogue(); /* finish XML output & exit */ return(0); userr: fprintf(stderr, "Usage: %s [-g Nlog2][-t pctcull][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", progname); fprintf(stderr, " or: %s -t{3|4} [-g Nlog2][-t pctcull][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n", progname); return(1); }