1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdf2rad.c,v 2.38 2021/03/27 17:50:18 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Plot 3-D BSDF output based on scattering interpolant or XML representation |
6 |
*/ |
7 |
|
8 |
#include <stdlib.h> |
9 |
#include "rtio.h" |
10 |
#include "paths.h" |
11 |
#include "rtmath.h" |
12 |
#include "bsdfrep.h" |
13 |
|
14 |
#ifndef NINCIDENT |
15 |
#define NINCIDENT 37 /* number of samples/hemisphere */ |
16 |
#endif |
17 |
#ifndef GRIDSTEP |
18 |
#define GRIDSTEP 2 /* our grid step size */ |
19 |
#endif |
20 |
#define SAMPRES (GRIDRES/GRIDSTEP) |
21 |
|
22 |
int front_comp = 0; /* front component flags (SDsamp*) */ |
23 |
int back_comp = 0; /* back component flags */ |
24 |
double overall_min = 1./PI; /* overall minimum BSDF value */ |
25 |
double min_log10; /* smallest log10 value for plotting */ |
26 |
double overall_max = .0; /* overall maximum BSDF value */ |
27 |
|
28 |
char ourTempDir[TEMPLEN+1] = ""; /* our temporary directory */ |
29 |
|
30 |
const char frpref[] = "rf"; |
31 |
const char ftpref[] = "tf"; |
32 |
const char brpref[] = "rb"; |
33 |
const char btpref[] = "tb"; |
34 |
const char dsuffix[] = ".txt"; |
35 |
|
36 |
const char sph_fmat[] = "fBSDFmat"; |
37 |
const char sph_bmat[] = "bBSDFmat"; |
38 |
const double sph_rad = 10.; |
39 |
const double sph_xoffset = 15.; |
40 |
|
41 |
#define bsdf_rad (sph_rad*.25) |
42 |
#define arrow_rad (bsdf_rad*.015) |
43 |
|
44 |
#define set_minlog() overall_min = (overall_min < 1e-5) ? 1e-5 : overall_min; \ |
45 |
min_log10 = log10(overall_min) - .1 |
46 |
|
47 |
char *progname; |
48 |
|
49 |
/* Get Fibonacci sphere vector (0 to NINCIDENT-1) */ |
50 |
static RREAL * |
51 |
get_ivector(FVECT iv, int i) |
52 |
{ |
53 |
const double phistep = PI*(3. - 2.236067978); |
54 |
double r; |
55 |
|
56 |
iv[2] = 1. - (i+.5)*(1./NINCIDENT); |
57 |
r = sqrt(1. - iv[2]*iv[2]); |
58 |
iv[0] = r * cos((i+1.)*phistep); |
59 |
iv[1] = r * sin((i+1.)*phistep); |
60 |
|
61 |
return(iv); |
62 |
} |
63 |
|
64 |
/* Convert incident vector into sphere position */ |
65 |
static RREAL * |
66 |
cvt_sposition(FVECT sp, const FVECT iv, int inc_side) |
67 |
{ |
68 |
sp[0] = -iv[0]*sph_rad + inc_side*sph_xoffset; |
69 |
sp[1] = -iv[1]*sph_rad; |
70 |
sp[2] = iv[2]*sph_rad; |
71 |
|
72 |
return(sp); |
73 |
} |
74 |
|
75 |
/* Get temporary file name */ |
76 |
static char * |
77 |
tfile_name(const char *prefix, const char *suffix, int i) |
78 |
{ |
79 |
static char buf[256]; |
80 |
|
81 |
if (!ourTempDir[0]) { /* create temporary directory */ |
82 |
mktemp(strcpy(ourTempDir,TEMPLATE)); |
83 |
if (mkdir(ourTempDir, 0777) < 0) { |
84 |
perror("mkdir"); |
85 |
exit(1); |
86 |
} |
87 |
} |
88 |
if (!prefix) prefix = "T"; |
89 |
if (!suffix) suffix = ""; |
90 |
sprintf(buf, "%s/%s%03d%s", ourTempDir, prefix, i, suffix); |
91 |
return(buf); |
92 |
} |
93 |
|
94 |
/* Remove temporary directory & contents */ |
95 |
static void |
96 |
cleanup_tmp(void) |
97 |
{ |
98 |
char buf[128]; |
99 |
|
100 |
if (!ourTempDir[0]) |
101 |
return; |
102 |
#if defined(_WIN32) || defined(_WIN64) |
103 |
sprintf(buf, "RMDIR %s /S /Q", ourTempDir); |
104 |
#else |
105 |
sprintf(buf, "rm -rf %s", ourTempDir); |
106 |
#endif |
107 |
system(buf); |
108 |
} |
109 |
|
110 |
/* Run the specified command, returning 1 if OK */ |
111 |
static int |
112 |
run_cmd(const char *cmd) |
113 |
{ |
114 |
fflush(stdout); |
115 |
if (system(cmd)) { |
116 |
fprintf(stderr, "%s: error running: %s\n", progname, cmd); |
117 |
return(0); |
118 |
} |
119 |
return(1); |
120 |
} |
121 |
|
122 |
/* Plot surface points for the given BSDF incident angle */ |
123 |
static int |
124 |
plotBSDF(const char *fname, const FVECT ivec, int dfl, const SDData *sd) |
125 |
{ |
126 |
FILE *fp = fopen(fname, "w"); |
127 |
int i, j; |
128 |
|
129 |
if (fp == NULL) { |
130 |
fprintf(stderr, "%s: cannot open '%s' for writing\n", |
131 |
progname, fname); |
132 |
return(0); |
133 |
} |
134 |
if (ivec[2] > 0) { |
135 |
input_orient = 1; |
136 |
output_orient = dfl&SDsampR ? 1 : -1; |
137 |
} else { |
138 |
input_orient = -1; |
139 |
output_orient = dfl&SDsampR ? -1 : 1; |
140 |
} |
141 |
for (i = SAMPRES; i--; ) |
142 |
for (j = 0; j < SAMPRES; j++) { |
143 |
FVECT ovec; |
144 |
SDValue sval; |
145 |
double bsdf; |
146 |
ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); |
147 |
if (SDreportError(SDevalBSDF(&sval, ivec, |
148 |
ovec, sd), stderr)) |
149 |
return(0); |
150 |
if (sval.cieY > overall_max) |
151 |
overall_max = sval.cieY; |
152 |
bsdf = (sval.cieY < overall_min) ? overall_min : sval.cieY; |
153 |
bsdf = log10(bsdf) - min_log10; |
154 |
fprintf(fp, "%.5f %.5f %.5f\n", |
155 |
ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); |
156 |
} |
157 |
if (fclose(fp) == EOF) { |
158 |
fprintf(stderr, "%s: error writing data to '%s'\n", |
159 |
progname, fname); |
160 |
return(0); |
161 |
} |
162 |
return(1); |
163 |
} |
164 |
|
165 |
/* Build BSDF values from loaded XML file */ |
166 |
static int |
167 |
build_wBSDF(const SDData *sd) |
168 |
{ |
169 |
FVECT ivec; |
170 |
int i; |
171 |
|
172 |
if (front_comp & SDsampR) |
173 |
for (i = 0; i < NINCIDENT; i++) { |
174 |
get_ivector(ivec, i); |
175 |
if (!plotBSDF(tfile_name(frpref, dsuffix, i), |
176 |
ivec, SDsampR, sd)) |
177 |
return(0); |
178 |
} |
179 |
if (front_comp & SDsampT) |
180 |
for (i = 0; i < NINCIDENT; i++) { |
181 |
get_ivector(ivec, i); |
182 |
if (!plotBSDF(tfile_name(ftpref, dsuffix, i), |
183 |
ivec, SDsampT, sd)) |
184 |
return(0); |
185 |
} |
186 |
if (back_comp & SDsampR) |
187 |
for (i = 0; i < NINCIDENT; i++) { |
188 |
get_ivector(ivec, i); |
189 |
ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; |
190 |
if (!plotBSDF(tfile_name(brpref, dsuffix, i), |
191 |
ivec, SDsampR, sd)) |
192 |
return(0); |
193 |
} |
194 |
if (back_comp & SDsampT) |
195 |
for (i = 0; i < NINCIDENT; i++) { |
196 |
get_ivector(ivec, i); |
197 |
ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; |
198 |
if (!plotBSDF(tfile_name(btpref, dsuffix, i), |
199 |
ivec, SDsampT, sd)) |
200 |
return(0); |
201 |
} |
202 |
return(1); |
203 |
} |
204 |
|
205 |
/* Plot surface points using radial basis function */ |
206 |
static int |
207 |
plotRBF(const char *fname, const RBFNODE *rbf) |
208 |
{ |
209 |
FILE *fp = fopen(fname, "w"); |
210 |
int i, j; |
211 |
|
212 |
if (fp == NULL) { |
213 |
fprintf(stderr, "%s: cannot open '%s' for writing\n", |
214 |
progname, fname); |
215 |
return(0); |
216 |
} |
217 |
for (i = SAMPRES; i--; ) |
218 |
for (j = 0; j < SAMPRES; j++) { |
219 |
FVECT ovec; |
220 |
double bsdf; |
221 |
ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); |
222 |
bsdf = eval_rbfrep(rbf, ovec); |
223 |
if (bsdf > overall_max) |
224 |
overall_max = bsdf; |
225 |
else if (bsdf < overall_min) |
226 |
bsdf = overall_min; |
227 |
bsdf = log10(bsdf) - min_log10; |
228 |
fprintf(fp, "%.5f %.5f %.5f\n", |
229 |
ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); |
230 |
} |
231 |
if (fclose(fp) == EOF) { |
232 |
fprintf(stderr, "%s: error writing data to '%s'\n", |
233 |
progname, fname); |
234 |
return(0); |
235 |
} |
236 |
return(1); |
237 |
} |
238 |
|
239 |
/* Build BSDF values from scattering interpolant representation */ |
240 |
static int |
241 |
build_wRBF(void) |
242 |
{ |
243 |
const char *pref; |
244 |
int i; |
245 |
|
246 |
if (input_orient > 0) { |
247 |
if (output_orient > 0) |
248 |
pref = frpref; |
249 |
else |
250 |
pref = ftpref; |
251 |
} else if (output_orient < 0) |
252 |
pref = brpref; |
253 |
else |
254 |
pref = btpref; |
255 |
|
256 |
for (i = 0; i < NINCIDENT; i++) { |
257 |
FVECT ivec; |
258 |
RBFNODE *rbf; |
259 |
get_ivector(ivec, i); |
260 |
if (input_orient < 0) { |
261 |
ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; |
262 |
} |
263 |
rbf = advect_rbf(ivec, 15000); |
264 |
if (!plotRBF(tfile_name(pref, dsuffix, i), rbf)) |
265 |
return(0); |
266 |
if (rbf) free(rbf); |
267 |
} |
268 |
return(1); /* next call frees */ |
269 |
} |
270 |
|
271 |
/* Put out mirror arrow for the given incident vector */ |
272 |
static void |
273 |
put_mirror_arrow(const FVECT origin, const FVECT nrm) |
274 |
{ |
275 |
const double arrow_len = 1.2*bsdf_rad; |
276 |
const double tip_len = 0.2*bsdf_rad; |
277 |
static int cnt = 1; |
278 |
FVECT refl; |
279 |
int i; |
280 |
|
281 |
refl[0] = 2.*nrm[2]*nrm[0]; |
282 |
refl[1] = 2.*nrm[2]*nrm[1]; |
283 |
refl[2] = 2.*nrm[2]*nrm[2] - 1.; |
284 |
|
285 |
printf("\n# Mirror arrow #%d\n", cnt); |
286 |
printf("\nshaft_mat cylinder inc_dir%d\n0\n0\n7", cnt); |
287 |
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
288 |
origin[0], origin[1], origin[2]+arrow_len, |
289 |
origin[0], origin[1], origin[2], |
290 |
arrow_rad); |
291 |
printf("\nshaft_mat cylinder mir_dir%d\n0\n0\n7", cnt); |
292 |
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
293 |
origin[0], origin[1], origin[2], |
294 |
origin[0] + arrow_len*refl[0], |
295 |
origin[1] + arrow_len*refl[1], |
296 |
origin[2] + arrow_len*refl[2], |
297 |
arrow_rad); |
298 |
printf("\ntip_mat cone mir_tip%d\n0\n0\n8", cnt); |
299 |
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", |
300 |
origin[0] + (arrow_len-.5*tip_len)*refl[0], |
301 |
origin[1] + (arrow_len-.5*tip_len)*refl[1], |
302 |
origin[2] + (arrow_len-.5*tip_len)*refl[2], |
303 |
origin[0] + (arrow_len+.5*tip_len)*refl[0], |
304 |
origin[1] + (arrow_len+.5*tip_len)*refl[1], |
305 |
origin[2] + (arrow_len+.5*tip_len)*refl[2], |
306 |
2.*arrow_rad); |
307 |
++cnt; |
308 |
} |
309 |
|
310 |
/* Put out transmitted direction arrow for the given incident vector */ |
311 |
static void |
312 |
put_trans_arrow(const FVECT origin) |
313 |
{ |
314 |
const double arrow_len = 1.2*bsdf_rad; |
315 |
const double tip_len = 0.2*bsdf_rad; |
316 |
static int cnt = 1; |
317 |
int i; |
318 |
|
319 |
printf("\n# Transmission arrow #%d\n", cnt); |
320 |
printf("\nshaft_mat cylinder trans_dir%d\n0\n0\n7", cnt); |
321 |
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
322 |
origin[0], origin[1], origin[2], |
323 |
origin[0], origin[1], origin[2]-arrow_len, |
324 |
arrow_rad); |
325 |
printf("\ntip_mat cone trans_tip%d\n0\n0\n8", cnt); |
326 |
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", |
327 |
origin[0], origin[1], origin[2]-arrow_len+.5*tip_len, |
328 |
origin[0], origin[1], origin[2]-arrow_len-.5*tip_len, |
329 |
2.*arrow_rad); |
330 |
++cnt; |
331 |
} |
332 |
|
333 |
/* Compute rotation (x,y,z) => (xp,yp,zp) */ |
334 |
static int |
335 |
addrot(char *xf, const FVECT xp, const FVECT yp, const FVECT zp) |
336 |
{ |
337 |
int n = 0; |
338 |
double theta; |
339 |
|
340 |
if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) { |
341 |
/* Special case for X' along Z-axis */ |
342 |
theta = -atan2(yp[0], yp[1]); |
343 |
sprintf(xf, " -ry %f -rz %f", |
344 |
xp[2] < 0.0 ? 90.0 : -90.0, |
345 |
theta*(180./PI)); |
346 |
return(4); |
347 |
} |
348 |
theta = atan2(yp[2], zp[2]); |
349 |
if (!FABSEQ(theta,0.0)) { |
350 |
sprintf(xf, " -rx %f", theta*(180./PI)); |
351 |
while (*xf) ++xf; |
352 |
n += 2; |
353 |
} |
354 |
theta = Asin(-xp[2]); |
355 |
if (!FABSEQ(theta,0.0)) { |
356 |
sprintf(xf, " -ry %f", theta*(180./PI)); |
357 |
while (*xf) ++xf; |
358 |
n += 2; |
359 |
} |
360 |
theta = atan2(xp[1], xp[0]); |
361 |
if (!FABSEQ(theta,0.0)) { |
362 |
sprintf(xf, " -rz %f", theta*(180./PI)); |
363 |
/* while (*xf) ++xf; */ |
364 |
n += 2; |
365 |
} |
366 |
return(n); |
367 |
} |
368 |
|
369 |
/* Put out BSDF surfaces */ |
370 |
static int |
371 |
put_BSDFs(void) |
372 |
{ |
373 |
const double scalef = bsdf_rad/(log10(overall_max) - min_log10); |
374 |
FVECT ivec, sorg, nrm, upv; |
375 |
RREAL vMtx[3][3]; |
376 |
char *fname; |
377 |
char cmdbuf[256]; |
378 |
char rotargs[64]; |
379 |
int nrota; |
380 |
int i; |
381 |
|
382 |
printf("\n# Gensurf output corresponding to %d incident directions\n", |
383 |
NINCIDENT); |
384 |
|
385 |
printf("\nvoid glow tip_mat\n0\n0\n4 1 0 1 0\n"); |
386 |
printf("\nvoid mixfunc shaft_mat\n4 tip_mat void 0.25 .\n0\n0\n"); |
387 |
|
388 |
for (i = 0; i < NINCIDENT; i++) { |
389 |
get_ivector(ivec, i); |
390 |
nrm[0] = -ivec[0]; nrm[1] = -ivec[1]; nrm[2] = ivec[2]; |
391 |
upv[0] = nrm[0]*nrm[1]*(nrm[2] - 1.); |
392 |
upv[1] = nrm[0]*nrm[0] + nrm[1]*nrm[1]*nrm[2]; |
393 |
upv[2] = -nrm[1]*(nrm[0]*nrm[0] + nrm[1]*nrm[1]); |
394 |
if (SDcompXform(vMtx, nrm, upv) != SDEnone) |
395 |
continue; |
396 |
nrota = addrot(rotargs, vMtx[0], vMtx[1], vMtx[2]); |
397 |
if (front_comp) { |
398 |
cvt_sposition(sorg, ivec, 1); |
399 |
printf("\nvoid colorfunc scale_pat\n"); |
400 |
printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); |
401 |
printf("\t-s %f -t %f %f %f\n0\n0\n", |
402 |
bsdf_rad, sorg[0], sorg[1], sorg[2]); |
403 |
printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); |
404 |
} |
405 |
if (front_comp & SDsampR) { |
406 |
put_mirror_arrow(sorg, nrm); |
407 |
fname = tfile_name(frpref, dsuffix, i); |
408 |
sprintf(cmdbuf, |
409 |
"gensurf scale_mat %s%d %s %s %s %d %d | xform %s -s %f -t %f %f %f", |
410 |
frpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, |
411 |
rotargs, scalef, sorg[0], sorg[1], sorg[2]); |
412 |
if (!run_cmd(cmdbuf)) |
413 |
return(0); |
414 |
} |
415 |
if (front_comp & SDsampT) { |
416 |
put_trans_arrow(sorg); |
417 |
fname = tfile_name(ftpref, dsuffix, i); |
418 |
sprintf(cmdbuf, |
419 |
"gensurf scale_mat %s%d %s %s %s %d %d | xform -I %s -s %f -t %f %f %f", |
420 |
ftpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, |
421 |
rotargs, scalef, sorg[0], sorg[1], sorg[2]); |
422 |
if (!run_cmd(cmdbuf)) |
423 |
return(0); |
424 |
} |
425 |
if (back_comp) { |
426 |
cvt_sposition(sorg, ivec, -1); |
427 |
printf("\nvoid colorfunc scale_pat\n"); |
428 |
printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); |
429 |
printf("\t-s %f -t %f %f %f\n0\n0\n", |
430 |
bsdf_rad, sorg[0], sorg[1], sorg[2]); |
431 |
printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); |
432 |
} |
433 |
if (back_comp & SDsampR) { |
434 |
put_mirror_arrow(sorg, nrm); |
435 |
fname = tfile_name(brpref, dsuffix, i); |
436 |
sprintf(cmdbuf, |
437 |
"gensurf scale_mat %s%d %s %s %s %d %d | xform -I -ry 180 %s -s %f -t %f %f %f", |
438 |
brpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, |
439 |
rotargs, scalef, sorg[0], sorg[1], sorg[2]); |
440 |
if (!run_cmd(cmdbuf)) |
441 |
return(0); |
442 |
} |
443 |
if (back_comp & SDsampT) { |
444 |
put_trans_arrow(sorg); |
445 |
fname = tfile_name(btpref, dsuffix, i); |
446 |
sprintf(cmdbuf, |
447 |
"gensurf scale_mat %s%d %s %s %s %d %d | xform -ry 180 %s -s %f -t %f %f %f", |
448 |
btpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, |
449 |
rotargs, scalef, sorg[0], sorg[1], sorg[2]); |
450 |
if (!run_cmd(cmdbuf)) |
451 |
return(0); |
452 |
} |
453 |
} |
454 |
return(1); |
455 |
} |
456 |
|
457 |
/* Put our hemisphere material */ |
458 |
static void |
459 |
put_matBSDF(const char *XMLfile) |
460 |
{ |
461 |
const char *curdir = "./"; |
462 |
|
463 |
if (!XMLfile) { /* simple material */ |
464 |
printf("\n# Simplified material because we have no XML input\n"); |
465 |
printf("\nvoid brightfunc latlong\n2 latlong bsdf2rad.cal\n0\n0\n"); |
466 |
if ((front_comp|back_comp) & SDsampT) |
467 |
printf("\nlatlong trans %s\n0\n0\n7 .75 .75 .75 0 .04 .5 .8\n", |
468 |
sph_fmat); |
469 |
else |
470 |
printf("\nlatlong plastic %s\n0\n0\n5 .5 .5 .5 0 0\n", |
471 |
sph_fmat); |
472 |
printf("\ninherit alias %s %s\n", sph_bmat, sph_fmat); |
473 |
return; |
474 |
} |
475 |
switch (XMLfile[0]) { /* avoid RAYPATH search */ |
476 |
case '.': |
477 |
case '~': |
478 |
CASEDIRSEP: |
479 |
curdir = ""; |
480 |
break; |
481 |
case '\0': |
482 |
fprintf(stderr, "%s: empty file name in put_matBSDF\n", progname); |
483 |
exit(1); |
484 |
break; |
485 |
} |
486 |
printf("\n# Actual BSDF materials for rendering the hemispheres\n"); |
487 |
printf("\nvoid BSDF BSDF_f\n6 0 \"%s%s\" upx upy upz bsdf2rad.cal\n0\n0\n", |
488 |
curdir, XMLfile); |
489 |
printf("\nvoid plastic black\n0\n0\n5 0 0 0 0 0\n"); |
490 |
printf("\nvoid mixfunc %s\n4 BSDF_f black latlong bsdf2rad.cal\n0\n0\n", |
491 |
sph_fmat); |
492 |
printf("\nvoid BSDF BSDF_b\n8 0 \"%s%s\" upx upy upz bsdf2rad.cal -ry 180\n0\n0\n", |
493 |
curdir, XMLfile); |
494 |
printf("\nvoid mixfunc %s\n4 BSDF_b black latlong bsdf2rad.cal\n0\n0\n", |
495 |
sph_bmat); |
496 |
} |
497 |
|
498 |
/* Put out overhead parallel light source */ |
499 |
static void |
500 |
put_source(void) |
501 |
{ |
502 |
printf("\n# Overhead parallel light source\n"); |
503 |
printf("\nvoid light bright\n0\n0\n3 2500 2500 2500\n"); |
504 |
printf("\nbright source light\n0\n0\n4 0 0 1 2\n"); |
505 |
printf("\n# Material used for labels\n"); |
506 |
printf("\nvoid trans vellum\n0\n0\n7 1 1 1 0 0 .5 0\n"); |
507 |
} |
508 |
|
509 |
/* Put out hemisphere(s) */ |
510 |
static void |
511 |
put_hemispheres(void) |
512 |
{ |
513 |
const int nsegs = 131; |
514 |
|
515 |
printf("\n# Hemisphere(s) for showing BSDF appearance (if XML file)\n"); |
516 |
if (front_comp) { |
517 |
printf( |
518 |
"\n!genrev %s Front \"R*sin(A*t)\" \"R*cos(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", |
519 |
sph_fmat, nsegs, sph_rad, 0.5*PI, sph_xoffset); |
520 |
printf("\nvoid brighttext front_text\n3 helvet.fnt . FRONT\n0\n"); |
521 |
printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", |
522 |
-.22*sph_rad + sph_xoffset, -1.4*sph_rad, |
523 |
.35/5.*sph_rad, -1.6*.35/5.*sph_rad); |
524 |
printf("\nfront_text alias front_label_mat vellum\n"); |
525 |
printf("\nfront_label_mat polygon front_label\n0\n0\n12"); |
526 |
printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", |
527 |
-.25*sph_rad + sph_xoffset, -1.3*sph_rad, |
528 |
-.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, |
529 |
.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, |
530 |
.25*sph_rad + sph_xoffset, -1.3*sph_rad ); |
531 |
} |
532 |
if (back_comp) { |
533 |
printf( |
534 |
"\n!genrev %s Back \"R*cos(A*t)\" \"R*sin(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", |
535 |
sph_bmat, nsegs, sph_rad, 0.5*PI, -sph_xoffset); |
536 |
printf("\nvoid brighttext back_text\n3 helvet.fnt . BACK\n0\n"); |
537 |
printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", |
538 |
-.22*sph_rad - sph_xoffset, -1.4*sph_rad, |
539 |
.35/4.*sph_rad, -1.6*.35/4.*sph_rad); |
540 |
printf("\nback_text alias back_label_mat vellum\n"); |
541 |
printf("\nback_label_mat polygon back_label\n0\n0\n12"); |
542 |
printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", |
543 |
-.25*sph_rad - sph_xoffset, -1.3*sph_rad, |
544 |
-.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, |
545 |
.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, |
546 |
.25*sph_rad - sph_xoffset, -1.3*sph_rad ); |
547 |
} |
548 |
} |
549 |
|
550 |
/* Put out falsecolor scale and name label */ |
551 |
static void |
552 |
put_scale(void) |
553 |
{ |
554 |
const double max_log10 = log10(overall_max); |
555 |
const double leg_width = 2.*.75*(fabs(sph_xoffset) - sph_rad); |
556 |
const double leg_height = 2.*sph_rad; |
557 |
const int text_lines = 6; |
558 |
const int text_digits = 8; |
559 |
char fmt[16]; |
560 |
int i; |
561 |
|
562 |
printf("\n# BSDF legend with falsecolor scale\n"); |
563 |
printf("\nvoid colorfunc lscale\n10 sca_red(Py) sca_grn(Py) sca_blu(Py)"); |
564 |
printf("\n\tbsdf2rad.cal -s %f -t 0 %f 0\n0\n0\n", leg_height, -.5*leg_height); |
565 |
sprintf(fmt, "%%.%df", text_digits-3); |
566 |
for (i = 0; i < text_lines; i++) { |
567 |
char vbuf[16]; |
568 |
sprintf(vbuf, fmt, pow(10., (i+.5)/text_lines*(max_log10-min_log10)+min_log10)); |
569 |
printf("\nlscale brighttext lscale\n"); |
570 |
printf("3 helvet.fnt . %s\n0\n12\n", vbuf); |
571 |
printf("\t%f %f 0\n", -.45*leg_width, ((i+.9)/text_lines-.5)*leg_height); |
572 |
printf("\t%f 0 0\n", .8*leg_width/strlen(vbuf)); |
573 |
printf("\t0 %f 0\n", -.9/text_lines*leg_height); |
574 |
printf("\t.01 1 -.1\n"); |
575 |
} |
576 |
printf("\nlscale alias legend_mat vellum\n"); |
577 |
printf("\nlegend_mat polygon legend\n0\n0\n12"); |
578 |
printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", |
579 |
-.5*leg_width, .5*leg_height, |
580 |
-.5*leg_width, -.5*leg_height, |
581 |
.5*leg_width, -.5*leg_height, |
582 |
.5*leg_width, .5*leg_height); |
583 |
printf("\nvoid brighttext BSDFtitle\n3 helvet.fnt . BSDF\n0\n12\n"); |
584 |
printf("\t%f %f 0\n", -.25*leg_width, .7*leg_height); |
585 |
printf("\t%f 0 0\n", .4/4.*leg_width); |
586 |
printf("\t0 %f 0\n", -.1*leg_height); |
587 |
printf("\t.01 1 -.1\n"); |
588 |
printf("\nBSDFtitle alias title_mat vellum\n"); |
589 |
printf("\ntitle_mat polygon title\n0\n0\n12"); |
590 |
printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", |
591 |
-.3*leg_width, .75*leg_height, |
592 |
-.3*leg_width, .55*leg_height, |
593 |
.3*leg_width, .55*leg_height, |
594 |
.3*leg_width, .75*leg_height); |
595 |
if (!bsdf_name[0]) |
596 |
return; |
597 |
printf("\nvoid brighttext BSDFname\n3 helvet.fnt . \"%s\"\n0\n12\n", bsdf_name); |
598 |
printf("\t%f %f 0\n", -.95*leg_width, -.6*leg_height); |
599 |
printf("\t%f 0 0\n", 1.8/strlen(bsdf_name)*leg_width); |
600 |
printf("\t0 %f 0\n", -.1*leg_height); |
601 |
printf("\t.01 1 -.1\n"); |
602 |
printf("\nBSDFname alias name_mat vellum\n"); |
603 |
printf("\nname_mat polygon name\n0\n0\n12"); |
604 |
printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", |
605 |
-leg_width, -.55*leg_height, |
606 |
-leg_width, -.75*leg_height, |
607 |
leg_width, -.75*leg_height, |
608 |
leg_width, -.55*leg_height); |
609 |
} |
610 |
|
611 |
/* Convert MGF to Radiance in output */ |
612 |
static void |
613 |
convert_mgf(const char *mgfdata) |
614 |
{ |
615 |
int len = strlen(mgfdata); |
616 |
char mgfn[128]; |
617 |
char radfn[128]; |
618 |
char cmdbuf[256]; |
619 |
float xmin, xmax, ymin, ymax, zmin, zmax; |
620 |
double max_dim; |
621 |
int fd; |
622 |
FILE *fp; |
623 |
|
624 |
if (!len) return; |
625 |
strcpy(mgfn, tfile_name("geom", ".mgf", 0)); |
626 |
fd = open(mgfn, O_WRONLY|O_CREAT, 0666); |
627 |
if (fd < 0 || write(fd, mgfdata, len) != len) { |
628 |
fprintf(stderr, "%s: cannot write file '%s'\n", |
629 |
progname, mgfn); |
630 |
return; |
631 |
} |
632 |
close(fd); |
633 |
strcpy(radfn, tfile_name("geom", ".rad", 0)); |
634 |
sprintf(cmdbuf, "mgf2rad %s > %s", mgfn, radfn); |
635 |
if (!run_cmd(cmdbuf)) |
636 |
return; |
637 |
sprintf(cmdbuf, "getbbox -w -h %s", radfn); |
638 |
if ((fp = popen(cmdbuf, "r")) == NULL || |
639 |
fscanf(fp, "%f %f %f %f %f %f", |
640 |
&xmin, &xmax, &ymin, &ymax, &zmin, &zmax) != 6 |
641 |
|| pclose(fp) < 0) { |
642 |
fprintf(stderr, "%s: error reading from command: %s\n", |
643 |
progname, cmdbuf); |
644 |
return; |
645 |
} |
646 |
max_dim = ymax - ymin; |
647 |
if (xmax - xmin > max_dim) |
648 |
max_dim = xmax - xmin; |
649 |
if (front_comp) { |
650 |
printf("\n# BSDF system geometry (front view)\n"); |
651 |
sprintf(cmdbuf, "xform -t %f %f %f -s %f -t %f %f 0 %s", |
652 |
-.5*(xmin+xmax), -.5*(ymin+ymax), -zmax, |
653 |
1.5*sph_rad/max_dim, |
654 |
sph_xoffset, -2.5*sph_rad, |
655 |
radfn); |
656 |
if (!run_cmd(cmdbuf)) |
657 |
return; |
658 |
} |
659 |
if (back_comp) { |
660 |
printf("\n# BSDF system geometry (back view)\n"); |
661 |
sprintf(cmdbuf, "xform -t %f %f %f -s %f -ry 180 -t %f %f 0 %s", |
662 |
-.5*(xmin+xmax), -.5*(ymin+ymax), -zmin, |
663 |
1.5*sph_rad/max_dim, |
664 |
-sph_xoffset, -2.5*sph_rad, |
665 |
radfn); |
666 |
if (!run_cmd(cmdbuf)) |
667 |
return; |
668 |
} |
669 |
} |
670 |
|
671 |
/* Check RBF input header line & get minimum BSDF value */ |
672 |
static int |
673 |
rbf_headline(char *s, void *p) |
674 |
{ |
675 |
char fmt[MAXFMTLEN]; |
676 |
|
677 |
if (formatval(fmt, s)) { |
678 |
if (strcmp(fmt, BSDFREP_FMT)) |
679 |
return(-1); |
680 |
return(0); |
681 |
} |
682 |
if (!strncmp(s, "IO_SIDES=", 9)) { |
683 |
sscanf(s+9, "%d %d", &input_orient, &output_orient); |
684 |
if (input_orient == output_orient) { |
685 |
if (input_orient > 0) |
686 |
front_comp |= SDsampR; |
687 |
else |
688 |
back_comp |= SDsampR; |
689 |
} else if (input_orient > 0) |
690 |
front_comp |= SDsampT; |
691 |
else |
692 |
back_comp |= SDsampT; |
693 |
return(0); |
694 |
} |
695 |
if (!strncmp(s, "BSDFMIN=", 8)) { |
696 |
sscanf(s+8, "%lf", &bsdf_min); |
697 |
if (bsdf_min < overall_min) |
698 |
overall_min = bsdf_min; |
699 |
return(0); |
700 |
} |
701 |
return(0); |
702 |
} |
703 |
|
704 |
/* Produce a Radiance model plotting the given BSDF representation */ |
705 |
int |
706 |
main(int argc, char *argv[]) |
707 |
{ |
708 |
int inpXML = -1; |
709 |
double myLim[2]; |
710 |
SDData myBSDF; |
711 |
int a, n; |
712 |
/* check arguments */ |
713 |
progname = argv[0]; |
714 |
a = 1; |
715 |
myLim[0] = -1; myLim[1] = -2; /* specified BSDF range? */ |
716 |
if (argc > a+3 && argv[a][0] == '-' && argv[a][1] == 'r') { |
717 |
myLim[0] = atof(argv[++a]); |
718 |
myLim[1] = atof(argv[++a]); |
719 |
++a; |
720 |
} |
721 |
if (argc > a && (n = strlen(argv[a])-4) > 0) { |
722 |
if (!strcasecmp(argv[a]+n, ".xml")) |
723 |
inpXML = 1; |
724 |
else if (!strcasecmp(argv[a]+n, ".sir")) |
725 |
inpXML = 0; |
726 |
} |
727 |
if (inpXML < 0 || inpXML & (argc > a+1)) { |
728 |
fprintf(stderr, "Usage: %s [-r min max] bsdf.xml > output.rad\n", progname); |
729 |
fprintf(stderr, " Or: %s [-r min max] hemi1.sir hemi2.sir .. > output.rad\n", progname); |
730 |
return(1); |
731 |
} |
732 |
fputs("# ", stdout); /* copy our command */ |
733 |
printargs(argc, argv, stdout); |
734 |
/* evaluate BSDF */ |
735 |
if (inpXML) { |
736 |
SDclearBSDF(&myBSDF, argv[a]); |
737 |
if (SDreportError(SDloadFile(&myBSDF, argv[a]), stderr)) |
738 |
return(1); |
739 |
if (myBSDF.rf != NULL) front_comp |= SDsampR; |
740 |
if (myBSDF.tf != NULL) front_comp |= SDsampT; |
741 |
if (myBSDF.rb != NULL) back_comp |= SDsampR; |
742 |
if (myBSDF.tb != NULL) back_comp |= SDsampT; |
743 |
if (!front_comp & !back_comp) { |
744 |
fprintf(stderr, "%s: nothing to plot in '%s'\n", |
745 |
progname, argv[a]); |
746 |
return(1); |
747 |
} |
748 |
if (myLim[0] >= 0) |
749 |
overall_min = myLim[0]; |
750 |
else { |
751 |
if (front_comp & SDsampR && myBSDF.rLambFront.cieY < overall_min*PI) |
752 |
overall_min = myBSDF.rLambFront.cieY/PI; |
753 |
if (back_comp & SDsampR && myBSDF.rLambBack.cieY < overall_min*PI) |
754 |
overall_min = myBSDF.rLambBack.cieY/PI; |
755 |
if (front_comp & SDsampT && myBSDF.tLambFront.cieY < overall_min*PI) |
756 |
overall_min = myBSDF.tLambFront.cieY/PI; |
757 |
if (back_comp & SDsampT && myBSDF.tLambBack.cieY < overall_min*PI) |
758 |
overall_min = myBSDF.tLambBack.cieY/PI; |
759 |
} |
760 |
set_minlog(); |
761 |
if (!build_wBSDF(&myBSDF)) |
762 |
return(1); |
763 |
if (myBSDF.matn[0]) |
764 |
strcpy(bsdf_name, myBSDF.matn); |
765 |
else |
766 |
strcpy(bsdf_name, myBSDF.name); |
767 |
strcpy(bsdf_manuf, myBSDF.makr); |
768 |
put_matBSDF(argv[a]); |
769 |
} else { |
770 |
FILE *fp[4]; |
771 |
if (argc > a+4) { |
772 |
fprintf(stderr, "%s: more than 4 hemispheres!\n", progname); |
773 |
return(1); |
774 |
} |
775 |
for (n = a; n < argc; n++) { |
776 |
fp[n-a] = fopen(argv[n], "rb"); |
777 |
if (fp[n-a] == NULL) { |
778 |
fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", |
779 |
progname, argv[n]); |
780 |
return(1); |
781 |
} |
782 |
if (getheader(fp[n-a], rbf_headline, NULL) < 0) { |
783 |
fprintf(stderr, "%s: bad BSDF interpolant '%s'\n", |
784 |
progname, argv[n]); |
785 |
return(1); |
786 |
} |
787 |
} |
788 |
if (myLim[0] >= 0) |
789 |
overall_min = myLim[0]; |
790 |
set_minlog(); |
791 |
for (n = a; n < argc; n++) { |
792 |
if (fseek(fp[n-a], 0L, SEEK_SET) < 0) { |
793 |
fprintf(stderr, "%s: cannot seek on '%s'\n", |
794 |
progname, argv[n]); |
795 |
return(1); |
796 |
} |
797 |
if (!load_bsdf_rep(fp[n-a])) |
798 |
return(1); |
799 |
fclose(fp[n-a]); |
800 |
if (!build_wRBF()) |
801 |
return(1); |
802 |
} |
803 |
put_matBSDF(NULL); |
804 |
} |
805 |
if (myLim[1] > myLim[0]) /* override maximum BSDF? */ |
806 |
overall_max = myLim[1]; |
807 |
put_source(); /* before hemispheres & labels */ |
808 |
put_hemispheres(); |
809 |
put_scale(); |
810 |
if (inpXML && myBSDF.mgf) |
811 |
convert_mgf(myBSDF.mgf); |
812 |
if (!put_BSDFs()) /* most of the output happens here */ |
813 |
return(1); |
814 |
cleanup_tmp(); |
815 |
return(0); |
816 |
} |