#ifndef lint static const char RCSid[] = "$Id: bsdf2rad.c,v 2.39 2021/12/07 23:55:02 greg Exp $"; #endif /* * Plot 3-D BSDF output based on scattering interpolant or XML representation */ #include #include "rtio.h" #include "paths.h" #include "rtmath.h" #include "bsdfrep.h" #ifndef NINCIDENT #define NINCIDENT 37 /* number of samples/hemisphere */ #endif #ifndef GRIDSTEP #define GRIDSTEP 2 /* our grid step size */ #endif #define SAMPRES (GRIDRES/GRIDSTEP) int front_comp = 0; /* front component flags (SDsamp*) */ int back_comp = 0; /* back component flags */ double overall_min = 1./PI; /* overall minimum BSDF value */ double min_log10; /* smallest log10 value for plotting */ double overall_max = .0; /* overall maximum BSDF value */ char ourTempDir[TEMPLEN+1] = ""; /* our temporary directory */ const char frpref[] = "rf"; const char ftpref[] = "tf"; const char brpref[] = "rb"; const char btpref[] = "tb"; const char dsuffix[] = ".txt"; const char sph_fmat[] = "fBSDFmat"; const char sph_bmat[] = "bBSDFmat"; const double sph_rad = 10.; const double sph_xoffset = 15.; #define bsdf_rad (sph_rad*.25) #define arrow_rad (bsdf_rad*.015) #define set_minlog() overall_min = (overall_min < 1e-5) ? 1e-5 : overall_min; \ min_log10 = log10(overall_min) - .1 char *progname; /* Get Fibonacci sphere vector (0 to NINCIDENT-1) */ static RREAL * get_ivector(FVECT iv, int i) { const double phistep = PI*(3. - 2.236067978); double r; iv[2] = 1. - (i+.5)*(1./NINCIDENT); r = sqrt(1. - iv[2]*iv[2]); iv[0] = r * cos((i+1.)*phistep); iv[1] = r * sin((i+1.)*phistep); return(iv); } /* Convert incident vector into sphere position */ static RREAL * cvt_sposition(FVECT sp, const FVECT iv, int inc_side) { sp[0] = -iv[0]*sph_rad + inc_side*sph_xoffset; sp[1] = -iv[1]*sph_rad; sp[2] = iv[2]*sph_rad; return(sp); } /* Get temporary file name */ static char * tfile_name(const char *prefix, const char *suffix, int i) { static char buf[256]; if (!ourTempDir[0]) { /* create temporary directory */ mktemp(strcpy(ourTempDir,TEMPLATE)); if (mkdir(ourTempDir, 0777) < 0) { perror("mkdir"); exit(1); } } if (!prefix) prefix = "T"; if (!suffix) suffix = ""; sprintf(buf, "%s/%s%03d%s", ourTempDir, prefix, i, suffix); return(buf); } /* Remove temporary directory & contents */ static void cleanup_tmp(void) { char buf[128]; if (!ourTempDir[0]) return; #if defined(_WIN32) || defined(_WIN64) sprintf(buf, "RMDIR %s /S /Q", ourTempDir); #else sprintf(buf, "rm -rf %s", ourTempDir); #endif system(buf); } /* Run the specified command, returning 1 if OK */ static int run_cmd(const char *cmd) { fflush(stdout); if (system(cmd)) { fprintf(stderr, "%s: error running: %s\n", progname, cmd); return(0); } return(1); } /* Plot surface points for the given BSDF incident angle */ static int plotBSDF(const char *fname, const FVECT ivec, int dfl, const SDData *sd) { FILE *fp = fopen(fname, "w"); int i, j; if (fp == NULL) { fprintf(stderr, "%s: cannot open '%s' for writing\n", progname, fname); return(0); } if (ivec[2] > 0) { input_orient = 1; output_orient = dfl&SDsampR ? 1 : -1; } else { input_orient = -1; output_orient = dfl&SDsampR ? -1 : 1; } for (i = SAMPRES; i--; ) for (j = 0; j < SAMPRES; j++) { FVECT ovec; SDValue sval; double bsdf; ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); if (SDreportError(SDevalBSDF(&sval, ivec, ovec, sd), stderr)) return(0); if (sval.cieY > overall_max) overall_max = sval.cieY; bsdf = (sval.cieY < overall_min) ? overall_min : sval.cieY; bsdf = log10(bsdf) - min_log10; fprintf(fp, "%.5f %.5f %.5f\n", ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); } if (fclose(fp) == EOF) { fprintf(stderr, "%s: error writing data to '%s'\n", progname, fname); return(0); } return(1); } /* Build BSDF values from loaded XML file */ static int build_wBSDF(const SDData *sd) { FVECT ivec; int i; if (front_comp & SDsampR) for (i = 0; i < NINCIDENT; i++) { get_ivector(ivec, i); if (!plotBSDF(tfile_name(frpref, dsuffix, i), ivec, SDsampR, sd)) return(0); } if (front_comp & SDsampT) for (i = 0; i < NINCIDENT; i++) { get_ivector(ivec, i); if (!plotBSDF(tfile_name(ftpref, dsuffix, i), ivec, SDsampT, sd)) return(0); } if (back_comp & SDsampR) for (i = 0; i < NINCIDENT; i++) { get_ivector(ivec, i); ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; if (!plotBSDF(tfile_name(brpref, dsuffix, i), ivec, SDsampR, sd)) return(0); } if (back_comp & SDsampT) for (i = 0; i < NINCIDENT; i++) { get_ivector(ivec, i); ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; if (!plotBSDF(tfile_name(btpref, dsuffix, i), ivec, SDsampT, sd)) return(0); } return(1); } /* Plot surface points using radial basis function */ static int plotRBF(const char *fname, const RBFNODE *rbf) { FILE *fp = fopen(fname, "w"); int i, j; if (fp == NULL) { fprintf(stderr, "%s: cannot open '%s' for writing\n", progname, fname); return(0); } for (i = SAMPRES; i--; ) for (j = 0; j < SAMPRES; j++) { FVECT ovec; double bsdf; ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); bsdf = eval_rbfrep(rbf, ovec); if (bsdf > overall_max) overall_max = bsdf; else if (bsdf < overall_min) bsdf = overall_min; bsdf = log10(bsdf) - min_log10; fprintf(fp, "%.5f %.5f %.5f\n", ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); } if (fclose(fp) == EOF) { fprintf(stderr, "%s: error writing data to '%s'\n", progname, fname); return(0); } return(1); } /* Build BSDF values from scattering interpolant representation */ static int build_wRBF(void) { const char *pref; int i; if (input_orient > 0) { if (output_orient > 0) pref = frpref; else pref = ftpref; } else if (output_orient < 0) pref = brpref; else pref = btpref; for (i = 0; i < NINCIDENT; i++) { FVECT ivec; RBFNODE *rbf; get_ivector(ivec, i); if (input_orient < 0) { ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; } rbf = advect_rbf(ivec, 15000); if (!plotRBF(tfile_name(pref, dsuffix, i), rbf)) return(0); if (rbf) free(rbf); } return(1); /* next call frees */ } /* Put out mirror arrow for the given incident vector */ static void put_mirror_arrow(const FVECT origin, const FVECT nrm) { const double arrow_len = 1.2*bsdf_rad; const double tip_len = 0.2*bsdf_rad; static int cnt = 1; FVECT refl; int i; refl[0] = 2.*nrm[2]*nrm[0]; refl[1] = 2.*nrm[2]*nrm[1]; refl[2] = 2.*nrm[2]*nrm[2] - 1.; printf("\n# Mirror arrow #%d\n", cnt); printf("\nshaft_mat cylinder inc_dir%d\n0\n0\n7", cnt); printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", origin[0], origin[1], origin[2]+arrow_len, origin[0], origin[1], origin[2], arrow_rad); printf("\nshaft_mat cylinder mir_dir%d\n0\n0\n7", cnt); printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", origin[0], origin[1], origin[2], origin[0] + arrow_len*refl[0], origin[1] + arrow_len*refl[1], origin[2] + arrow_len*refl[2], arrow_rad); printf("\ntip_mat cone mir_tip%d\n0\n0\n8", cnt); printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", origin[0] + (arrow_len-.5*tip_len)*refl[0], origin[1] + (arrow_len-.5*tip_len)*refl[1], origin[2] + (arrow_len-.5*tip_len)*refl[2], origin[0] + (arrow_len+.5*tip_len)*refl[0], origin[1] + (arrow_len+.5*tip_len)*refl[1], origin[2] + (arrow_len+.5*tip_len)*refl[2], 2.*arrow_rad); ++cnt; } /* Put out transmitted direction arrow for the given incident vector */ static void put_trans_arrow(const FVECT origin) { const double arrow_len = 1.2*bsdf_rad; const double tip_len = 0.2*bsdf_rad; static int cnt = 1; int i; printf("\n# Transmission arrow #%d\n", cnt); printf("\nshaft_mat cylinder trans_dir%d\n0\n0\n7", cnt); printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", origin[0], origin[1], origin[2], origin[0], origin[1], origin[2]-arrow_len, arrow_rad); printf("\ntip_mat cone trans_tip%d\n0\n0\n8", cnt); printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", origin[0], origin[1], origin[2]-arrow_len+.5*tip_len, origin[0], origin[1], origin[2]-arrow_len-.5*tip_len, 2.*arrow_rad); ++cnt; } /* Compute rotation (x,y,z) => (xp,yp,zp) */ static int addrot(char *xf, const FVECT xp, const FVECT yp, const FVECT zp) { int n = 0; double theta; if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) { /* Special case for X' along Z-axis */ theta = -atan2(yp[0], yp[1]); sprintf(xf, " -ry %f -rz %f", xp[2] < 0.0 ? 90.0 : -90.0, theta*(180./PI)); return(4); } theta = atan2(yp[2], zp[2]); if (!FABSEQ(theta,0.0)) { sprintf(xf, " -rx %f", theta*(180./PI)); while (*xf) ++xf; n += 2; } theta = Asin(-xp[2]); if (!FABSEQ(theta,0.0)) { sprintf(xf, " -ry %f", theta*(180./PI)); while (*xf) ++xf; n += 2; } theta = atan2(xp[1], xp[0]); if (!FABSEQ(theta,0.0)) { sprintf(xf, " -rz %f", theta*(180./PI)); /* while (*xf) ++xf; */ n += 2; } return(n); } /* Put out BSDF surfaces */ static int put_BSDFs(void) { const double scalef = bsdf_rad/(log10(overall_max) - min_log10); FVECT ivec, sorg, nrm, upv; RREAL vMtx[3][3]; char *fname; char cmdbuf[256]; char rotargs[64]; int nrota; int i; printf("\n# Gensurf output corresponding to %d incident directions\n", NINCIDENT); printf("\nvoid glow tip_mat\n0\n0\n4 1 0 1 0\n"); printf("\nvoid mixfunc shaft_mat\n4 tip_mat void 0.25 .\n0\n0\n"); for (i = 0; i < NINCIDENT; i++) { get_ivector(ivec, i); nrm[0] = -ivec[0]; nrm[1] = -ivec[1]; nrm[2] = ivec[2]; upv[0] = nrm[0]*nrm[1]*(nrm[2] - 1.); upv[1] = nrm[0]*nrm[0] + nrm[1]*nrm[1]*nrm[2]; upv[2] = -nrm[1]*(nrm[0]*nrm[0] + nrm[1]*nrm[1]); if (SDcompXform(vMtx, nrm, upv) != SDEnone) continue; nrota = addrot(rotargs, vMtx[0], vMtx[1], vMtx[2]); if (front_comp) { cvt_sposition(sorg, ivec, 1); printf("\nvoid colorfunc scale_pat\n"); printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); printf("\t-s %f -t %f %f %f\n0\n0\n", bsdf_rad, sorg[0], sorg[1], sorg[2]); printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); } if (front_comp & SDsampR) { put_mirror_arrow(sorg, nrm); fname = tfile_name(frpref, dsuffix, i); sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform %s -s %f -t %f %f %f", frpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, rotargs, scalef, sorg[0], sorg[1], sorg[2]); if (!run_cmd(cmdbuf)) return(0); } if (front_comp & SDsampT) { put_trans_arrow(sorg); fname = tfile_name(ftpref, dsuffix, i); sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I %s -s %f -t %f %f %f", ftpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, rotargs, scalef, sorg[0], sorg[1], sorg[2]); if (!run_cmd(cmdbuf)) return(0); } if (back_comp) { cvt_sposition(sorg, ivec, -1); printf("\nvoid colorfunc scale_pat\n"); printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); printf("\t-s %f -t %f %f %f\n0\n0\n", bsdf_rad, sorg[0], sorg[1], sorg[2]); printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); } if (back_comp & SDsampR) { put_mirror_arrow(sorg, nrm); fname = tfile_name(brpref, dsuffix, i); sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I -ry 180 %s -s %f -t %f %f %f", brpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, rotargs, scalef, sorg[0], sorg[1], sorg[2]); if (!run_cmd(cmdbuf)) return(0); } if (back_comp & SDsampT) { put_trans_arrow(sorg); fname = tfile_name(btpref, dsuffix, i); sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -ry 180 %s -s %f -t %f %f %f", btpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, rotargs, scalef, sorg[0], sorg[1], sorg[2]); if (!run_cmd(cmdbuf)) return(0); } } return(1); } /* Put our hemisphere material */ static void put_matBSDF(const char *XMLfile) { const char *curdir = "./"; if (!XMLfile) { /* simple material */ printf("\n# Simplified material because we have no XML input\n"); printf("\nvoid brightfunc latlong\n2 latlong bsdf2rad.cal\n0\n0\n"); if ((front_comp|back_comp) & SDsampT) printf("\nlatlong trans %s\n0\n0\n7 .75 .75 .75 0 .04 .5 .8\n", sph_fmat); else printf("\nlatlong plastic %s\n0\n0\n5 .5 .5 .5 0 0\n", sph_fmat); printf("\ninherit alias %s %s\n", sph_bmat, sph_fmat); return; } switch (XMLfile[0]) { /* avoid RAYPATH search */ case '.': case '~': CASEDIRSEP: curdir = ""; break; case '\0': fprintf(stderr, "%s: empty file name in put_matBSDF\n", progname); exit(1); break; } printf("\n# Actual BSDF materials for rendering the hemispheres\n"); printf("\nvoid BSDF BSDF_f\n6 0 \"%s%s\" upx upy upz bsdf2rad.cal\n0\n0\n", curdir, XMLfile); printf("\nvoid plastic black\n0\n0\n5 0 0 0 0 0\n"); printf("\nvoid mixfunc %s\n4 BSDF_f black latlong bsdf2rad.cal\n0\n0\n", sph_fmat); printf("\nvoid BSDF BSDF_b\n8 0 \"%s%s\" upx upy upz bsdf2rad.cal -ry 180\n0\n0\n", curdir, XMLfile); printf("\nvoid mixfunc %s\n4 BSDF_b black latlong bsdf2rad.cal\n0\n0\n", sph_bmat); } /* Put out overhead parallel light source */ static void put_source(void) { printf("\n# Overhead parallel light source\n"); printf("\nvoid light bright\n0\n0\n3 2500 2500 2500\n"); printf("\nbright source light\n0\n0\n4 0 0 1 2\n"); printf("\n# Material used for labels\n"); printf("\nvoid trans vellum\n0\n0\n7 1 1 1 0 0 .5 0\n"); } /* Put out hemisphere(s) */ static void put_hemispheres(void) { const int nsegs = 131; printf("\n# Hemisphere(s) for showing BSDF appearance (if XML file)\n"); if (front_comp) { printf( "\n!genrev %s Front \"R*sin(A*t)\" \"R*cos(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", sph_fmat, nsegs, sph_rad, 0.5*PI, sph_xoffset); printf("\nvoid brighttext front_text\n3 helvet.fnt . FRONT\n0\n"); printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", -.22*sph_rad + sph_xoffset, -1.4*sph_rad, .35/5.*sph_rad, -1.6*.35/5.*sph_rad); printf("\nfront_text alias front_label_mat vellum\n"); printf("\nfront_label_mat polygon front_label\n0\n0\n12"); printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", -.25*sph_rad + sph_xoffset, -1.3*sph_rad, -.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, .25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, .25*sph_rad + sph_xoffset, -1.3*sph_rad ); } if (back_comp) { printf( "\n!genrev %s Back \"R*cos(A*t)\" \"R*sin(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", sph_bmat, nsegs, sph_rad, 0.5*PI, -sph_xoffset); printf("\nvoid brighttext back_text\n3 helvet.fnt . BACK\n0\n"); printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", -.22*sph_rad - sph_xoffset, -1.4*sph_rad, .35/4.*sph_rad, -1.6*.35/4.*sph_rad); printf("\nback_text alias back_label_mat vellum\n"); printf("\nback_label_mat polygon back_label\n0\n0\n12"); printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", -.25*sph_rad - sph_xoffset, -1.3*sph_rad, -.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, .25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, .25*sph_rad - sph_xoffset, -1.3*sph_rad ); } } /* Put out falsecolor scale and name label */ static void put_scale(void) { const double max_log10 = log10(overall_max); const double leg_width = 2.*.75*(fabs(sph_xoffset) - sph_rad); const double leg_height = 2.*sph_rad; const int text_lines = 6; const int text_digits = 8; char fmt[16]; int i; printf("\n# BSDF legend with falsecolor scale\n"); printf("\nvoid colorfunc lscale\n10 sca_red(Py) sca_grn(Py) sca_blu(Py)"); printf("\n\tbsdf2rad.cal -s %f -t 0 %f 0\n0\n0\n", leg_height, -.5*leg_height); sprintf(fmt, "%%.%df", text_digits-3); for (i = 0; i < text_lines; i++) { char vbuf[16]; sprintf(vbuf, fmt, pow(10., (i+.5)/text_lines*(max_log10-min_log10)+min_log10)); printf("\nlscale brighttext lscale\n"); printf("3 helvet.fnt . %s\n0\n12\n", vbuf); printf("\t%f %f 0\n", -.45*leg_width, ((i+.9)/text_lines-.5)*leg_height); printf("\t%f 0 0\n", .8*leg_width/strlen(vbuf)); printf("\t0 %f 0\n", -.9/text_lines*leg_height); printf("\t.01 1 -.1\n"); } printf("\nlscale alias legend_mat vellum\n"); printf("\nlegend_mat polygon legend\n0\n0\n12"); printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", -.5*leg_width, .5*leg_height, -.5*leg_width, -.5*leg_height, .5*leg_width, -.5*leg_height, .5*leg_width, .5*leg_height); printf("\nvoid brighttext BSDFtitle\n3 helvet.fnt . BSDF\n0\n12\n"); printf("\t%f %f 0\n", -.25*leg_width, .7*leg_height); printf("\t%f 0 0\n", .4/4.*leg_width); printf("\t0 %f 0\n", -.1*leg_height); printf("\t.01 1 -.1\n"); printf("\nBSDFtitle alias title_mat vellum\n"); printf("\ntitle_mat polygon title\n0\n0\n12"); printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", -.3*leg_width, .75*leg_height, -.3*leg_width, .55*leg_height, .3*leg_width, .55*leg_height, .3*leg_width, .75*leg_height); if (!bsdf_name[0]) return; printf("\nvoid brighttext BSDFname\n3 helvet.fnt . \"%s\"\n0\n12\n", bsdf_name); printf("\t%f %f 0\n", -.95*leg_width, -.6*leg_height); printf("\t%f 0 0\n", 1.8/strlen(bsdf_name)*leg_width); printf("\t0 %f 0\n", -.1*leg_height); printf("\t.01 1 -.1\n"); printf("\nBSDFname alias name_mat vellum\n"); printf("\nname_mat polygon name\n0\n0\n12"); printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", -leg_width, -.55*leg_height, -leg_width, -.75*leg_height, leg_width, -.75*leg_height, leg_width, -.55*leg_height); } /* Convert MGF to Radiance in output */ static void convert_mgf(const char *mgfdata) { int len = strlen(mgfdata); char mgfn[128]; char radfn[128]; char cmdbuf[256]; float xmin, xmax, ymin, ymax, zmin, zmax; double max_dim; int fd; FILE *fp; if (!len) return; strcpy(mgfn, tfile_name("geom", ".mgf", 0)); fd = open(mgfn, O_WRONLY|O_CREAT, 0666); if (fd < 0 || write(fd, mgfdata, len) != len) { fprintf(stderr, "%s: cannot write file '%s'\n", progname, mgfn); return; } close(fd); strcpy(radfn, tfile_name("geom", ".rad", 0)); sprintf(cmdbuf, "mgf2rad %s > %s", mgfn, radfn); if (!run_cmd(cmdbuf)) return; sprintf(cmdbuf, "getbbox -w -h %s", radfn); if ((fp = popen(cmdbuf, "r")) == NULL || fscanf(fp, "%f %f %f %f %f %f", &xmin, &xmax, &ymin, &ymax, &zmin, &zmax) != 6 || pclose(fp) < 0) { fprintf(stderr, "%s: error reading from command: %s\n", progname, cmdbuf); return; } max_dim = ymax - ymin; if (xmax - xmin > max_dim) max_dim = xmax - xmin; if (front_comp) { printf("\n# BSDF system geometry (front view)\n"); sprintf(cmdbuf, "xform -t %f %f %f -s %f -t %f %f 0 %s", -.5*(xmin+xmax), -.5*(ymin+ymax), -zmax, 1.5*sph_rad/max_dim, sph_xoffset, -2.5*sph_rad, radfn); if (!run_cmd(cmdbuf)) return; } if (back_comp) { printf("\n# BSDF system geometry (back view)\n"); sprintf(cmdbuf, "xform -t %f %f %f -s %f -ry 180 -t %f %f 0 %s", -.5*(xmin+xmax), -.5*(ymin+ymax), -zmin, 1.5*sph_rad/max_dim, -sph_xoffset, -2.5*sph_rad, radfn); if (!run_cmd(cmdbuf)) return; } } /* Check RBF input header line & get minimum BSDF value */ static int rbf_headline(char *s, void *p) { char fmt[MAXFMTLEN]; if (formatval(fmt, s)) { if (strcmp(fmt, BSDFREP_FMT)) return(-1); return(0); } if (!strncmp(s, "IO_SIDES=", 9)) { sscanf(s+9, "%d %d", &input_orient, &output_orient); if (input_orient == output_orient) { if (input_orient > 0) front_comp |= SDsampR; else back_comp |= SDsampR; } else if (input_orient > 0) front_comp |= SDsampT; else back_comp |= SDsampT; return(0); } if (!strncmp(s, "BSDFMIN=", 8)) { sscanf(s+8, "%lf", &bsdf_min); if (bsdf_min < overall_min) overall_min = bsdf_min; return(0); } return(0); } /* Produce a Radiance model plotting the given BSDF representation */ int main(int argc, char *argv[]) { int inpXML = -1; double myLim[2]; SDData myBSDF; int a, n; /* check arguments */ progname = argv[0]; a = 1; myLim[0] = -1; myLim[1] = -2; /* specified BSDF range? */ if (argc > a+3 && argv[a][0] == '-' && argv[a][1] == 'r') { myLim[0] = atof(argv[++a]); myLim[1] = atof(argv[++a]); ++a; } if (argc > a && (n = strlen(argv[a])-4) > 0) { if (!strcasecmp(argv[a]+n, ".xml")) inpXML = 1; else if (!strcasecmp(argv[a]+n, ".sir")) inpXML = 0; } if (inpXML < 0 || inpXML & (argc > a+1)) { fprintf(stderr, "Usage: %s [-r min max] bsdf.xml > output.rad\n", progname); fprintf(stderr, " Or: %s [-r min max] hemi1.sir hemi2.sir .. > output.rad\n", progname); return(1); } fputs("# ", stdout); /* copy our command */ printargs(argc, argv, stdout); /* evaluate BSDF */ if (inpXML) { SDclearBSDF(&myBSDF, argv[a]); if (SDreportError(SDloadFile(&myBSDF, argv[a]), stderr)) return(1); if (myBSDF.rf != NULL) front_comp |= SDsampR; if (myBSDF.tf != NULL) front_comp |= SDsampT; if (myBSDF.rb != NULL) back_comp |= SDsampR; if (myBSDF.tb != NULL) back_comp |= SDsampT; if (!front_comp & !back_comp) { fprintf(stderr, "%s: nothing to plot in '%s'\n", progname, argv[a]); return(1); } if (myLim[0] >= 0) overall_min = myLim[0]; else { if (front_comp & SDsampR && myBSDF.rLambFront.cieY < overall_min*PI) overall_min = myBSDF.rLambFront.cieY/PI; if (back_comp & SDsampR && myBSDF.rLambBack.cieY < overall_min*PI) overall_min = myBSDF.rLambBack.cieY/PI; if (front_comp & SDsampT && myBSDF.tLambFront.cieY < overall_min*PI) overall_min = myBSDF.tLambFront.cieY/PI; if (back_comp & SDsampT && myBSDF.tLambBack.cieY < overall_min*PI) overall_min = myBSDF.tLambBack.cieY/PI; } set_minlog(); if (!build_wBSDF(&myBSDF)) return(1); if (myBSDF.matn[0]) strcpy(bsdf_name, myBSDF.matn); else strcpy(bsdf_name, myBSDF.name); strcpy(bsdf_manuf, myBSDF.makr); put_matBSDF(argv[a]); } else { FILE *fp[4]; if (argc > a+4) { fprintf(stderr, "%s: more than 4 hemispheres!\n", progname); return(1); } for (n = a; n < argc; n++) { fp[n-a] = fopen(argv[n], "rb"); if (fp[n-a] == NULL) { fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", progname, argv[n]); return(1); } if (getheader(fp[n-a], rbf_headline, NULL) < 0) { fprintf(stderr, "%s: bad BSDF interpolant '%s'\n", progname, argv[n]); return(1); } } if (myLim[0] >= 0) overall_min = myLim[0]; set_minlog(); for (n = a; n < argc; n++) { if (fseek(fp[n-a], 0L, SEEK_SET) < 0) { fprintf(stderr, "%s: cannot seek on '%s'\n", progname, argv[n]); return(1); } if (!load_bsdf_rep(fp[n-a])) return(1); fclose(fp[n-a]); if (!build_wRBF()) return(1); } put_matBSDF(NULL); } if (myLim[1] > myLim[0]) /* override maximum BSDF? */ overall_max = myLim[1]; put_source(); /* before hemispheres & labels */ put_hemispheres(); put_scale(); if (inpXML && myBSDF.mgf) convert_mgf(myBSDF.mgf); if (!put_BSDFs()) /* most of the output happens here */ return(1); cleanup_tmp(); return(0); }