ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdf2rad.c
Revision: 2.24
Committed: Tue Apr 11 18:26:55 2017 UTC (7 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.23: +16 -10 lines
Log Message:
Fixed BSDF material orientation for back side

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf2rad.c,v 2.23 2017/04/11 03:47:23 greg Exp $";
3 #endif
4 /*
5 * Plot 3-D BSDF output based on scattering interpolant or XML representation
6 */
7
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdlib.h>
11 #include "paths.h"
12 #include "rtmath.h"
13 #include "resolu.h"
14 #include "bsdfrep.h"
15
16 #define NINCIDENT 37 /* number of samples/hemisphere */
17
18 #define GRIDSTEP 2 /* our grid step size */
19 #define SAMPRES (GRIDRES/GRIDSTEP)
20
21 int front_comp = 0; /* front component flags (SDsamp*) */
22 int back_comp = 0; /* back component flags */
23 double overall_min = 1./PI; /* overall minimum BSDF value */
24 double min_log10; /* smallest log10 value for plotting */
25 double overall_max = .0; /* overall maximum BSDF value */
26
27 char ourTempDir[TEMPLEN] = ""; /* our temporary directory */
28
29 const char frpref[] = "frefl";
30 const char ftpref[] = "ftrans";
31 const char brpref[] = "brefl";
32 const char btpref[] = "btrans";
33 const char dsuffix[] = ".txt";
34
35 const char sph_fmat[] = "fBSDFmat";
36 const char sph_bmat[] = "bBSDFmat";
37 const double sph_rad = 10.;
38 const double sph_xoffset = 15.;
39
40 #define bsdf_rad (sph_rad*.25)
41 #define arrow_rad (bsdf_rad*.015)
42
43 #define FEQ(a,b) ((a)-(b) <= 1e-7 && (b)-(a) <= 1e-7)
44
45 #define set_minlog() (min_log10 = log10(overall_min + 1e-5) - .1)
46
47 char *progname;
48
49 /* Get Fibonacci sphere vector (0 to NINCIDENT-1) */
50 static RREAL *
51 get_ivector(FVECT iv, int i)
52 {
53 const double phistep = PI*(3. - 2.236067978);
54 double r;
55
56 iv[2] = 1. - (i+.5)*(1./NINCIDENT);
57 r = sqrt(1. - iv[2]*iv[2]);
58 iv[0] = r * cos((i+1.)*phistep);
59 iv[1] = r * sin((i+1.)*phistep);
60
61 return(iv);
62 }
63
64 /* Convert incident vector into sphere position */
65 static RREAL *
66 cvt_sposition(FVECT sp, const FVECT iv, int inc_side)
67 {
68 sp[0] = -iv[0]*sph_rad + inc_side*sph_xoffset;
69 sp[1] = -iv[1]*sph_rad;
70 sp[2] = iv[2]*sph_rad;
71
72 return(sp);
73 }
74
75 /* Get temporary file name */
76 static char *
77 tfile_name(const char *prefix, const char *suffix, int i)
78 {
79 static char buf[128];
80
81 if (!ourTempDir[0]) { /* create temporary directory */
82 mktemp(strcpy(ourTempDir,TEMPLATE));
83 if (mkdir(ourTempDir, 0777) < 0) {
84 perror("mkdir");
85 exit(1);
86 }
87 }
88 if (!prefix) prefix = "T";
89 if (!suffix) suffix = "";
90 sprintf(buf, "%s/%s%03d%s", ourTempDir, prefix, i, suffix);
91 return(buf);
92 }
93
94 /* Remove temporary directory & contents */
95 static void
96 cleanup_tmp(void)
97 {
98 char buf[128];
99
100 if (!ourTempDir[0])
101 return;
102 #if defined(_WIN32) || defined(_WIN64)
103 sprintf(buf, "RMDIR %s /S /Q", ourTempDir);
104 #else
105 sprintf(buf, "rm -rf %s", ourTempDir);
106 #endif
107 system(buf);
108 }
109
110 /* Run the specified command, returning 1 if OK */
111 static int
112 run_cmd(const char *cmd)
113 {
114 fflush(stdout);
115 if (system(cmd)) {
116 fprintf(stderr, "%s: error running: %s\n", progname, cmd);
117 return(0);
118 }
119 return(1);
120 }
121
122 /* Plot surface points for the given BSDF incident angle */
123 static int
124 plotBSDF(const char *fname, const FVECT ivec, int dfl, const SDData *sd)
125 {
126 FILE *fp = fopen(fname, "w");
127 int i, j;
128
129 if (fp == NULL) {
130 fprintf(stderr, "%s: cannot open '%s' for writing\n",
131 progname, fname);
132 return(0);
133 }
134 if (ivec[2] > 0) {
135 input_orient = 1;
136 output_orient = dfl&SDsampR ? 1 : -1;
137 } else {
138 input_orient = -1;
139 output_orient = dfl&SDsampR ? -1 : 1;
140 }
141 for (i = SAMPRES; i--; )
142 for (j = 0; j < SAMPRES; j++) {
143 FVECT ovec;
144 SDValue sval;
145 double bsdf;
146 ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP);
147 if (SDreportError(SDevalBSDF(&sval, ovec,
148 ivec, sd), stderr))
149 return(0);
150 if (sval.cieY > overall_max)
151 overall_max = sval.cieY;
152 bsdf = (sval.cieY < overall_min) ? overall_min : sval.cieY;
153 bsdf = log10(bsdf) - min_log10;
154 fprintf(fp, "%.5f %.5f %.5f\n",
155 ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf);
156 }
157 if (fclose(fp) == EOF) {
158 fprintf(stderr, "%s: error writing data to '%s'\n",
159 progname, fname);
160 return(0);
161 }
162 return(1);
163 }
164
165 /* Build BSDF values from loaded XML file */
166 static int
167 build_wBSDF(const SDData *sd)
168 {
169 FVECT ivec;
170 int i;
171
172 if (front_comp & SDsampR)
173 for (i = 0; i < NINCIDENT; i++) {
174 get_ivector(ivec, i);
175 if (!plotBSDF(tfile_name(frpref, dsuffix, i),
176 ivec, SDsampR, sd))
177 return(0);
178 }
179 if (front_comp & SDsampT)
180 for (i = 0; i < NINCIDENT; i++) {
181 get_ivector(ivec, i);
182 if (!plotBSDF(tfile_name(ftpref, dsuffix, i),
183 ivec, SDsampT, sd))
184 return(0);
185 }
186 if (back_comp & SDsampR)
187 for (i = 0; i < NINCIDENT; i++) {
188 get_ivector(ivec, i);
189 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
190 if (!plotBSDF(tfile_name(brpref, dsuffix, i),
191 ivec, SDsampR, sd))
192 return(0);
193 }
194 if (back_comp & SDsampT)
195 for (i = 0; i < NINCIDENT; i++) {
196 get_ivector(ivec, i);
197 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
198 if (!plotBSDF(tfile_name(btpref, dsuffix, i),
199 ivec, SDsampT, sd))
200 return(0);
201 }
202 return(1);
203 }
204
205 /* Plot surface points using radial basis function */
206 static int
207 plotRBF(const char *fname, const RBFNODE *rbf)
208 {
209 FILE *fp = fopen(fname, "w");
210 int i, j;
211
212 if (fp == NULL) {
213 fprintf(stderr, "%s: cannot open '%s' for writing\n",
214 progname, fname);
215 return(0);
216 }
217 for (i = SAMPRES; i--; )
218 for (j = 0; j < SAMPRES; j++) {
219 FVECT ovec;
220 double bsdf;
221 ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP);
222 bsdf = eval_rbfrep(rbf, ovec);
223 if (bsdf > overall_max)
224 overall_max = bsdf;
225 else if (bsdf < overall_min)
226 bsdf = overall_min;
227 bsdf = log10(bsdf) - min_log10;
228 fprintf(fp, "%.5f %.5f %.5f\n",
229 ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf);
230 }
231 if (fclose(fp) == EOF) {
232 fprintf(stderr, "%s: error writing data to '%s'\n",
233 progname, fname);
234 return(0);
235 }
236 return(1);
237 }
238
239 /* Build BSDF values from scattering interpolant representation */
240 static int
241 build_wRBF(void)
242 {
243 const char *pref;
244 int i;
245
246 if (input_orient > 0) {
247 if (output_orient > 0)
248 pref = frpref;
249 else
250 pref = ftpref;
251 } else if (output_orient < 0)
252 pref = brpref;
253 else
254 pref = btpref;
255
256 for (i = 0; i < NINCIDENT; i++) {
257 FVECT ivec;
258 RBFNODE *rbf;
259 get_ivector(ivec, i);
260 if (input_orient < 0) {
261 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
262 }
263 rbf = advect_rbf(ivec, 15000);
264 if (!plotRBF(tfile_name(pref, dsuffix, i), rbf))
265 return(0);
266 if (rbf) free(rbf);
267 }
268 return(1); /* next call frees */
269 }
270
271 /* Put out mirror arrow for the given incident vector */
272 static void
273 put_mirror_arrow(const FVECT ivec, int inc_side)
274 {
275 const double arrow_len = 1.2*bsdf_rad;
276 const double tip_len = 0.2*bsdf_rad;
277 FVECT origin, refl;
278 int i;
279
280 cvt_sposition(origin, ivec, inc_side);
281
282 refl[0] = -2.*ivec[2]*ivec[0];
283 refl[1] = -2.*ivec[2]*ivec[1];
284 refl[2] = 2.*ivec[2]*ivec[2] - 1.;
285
286 printf("\n# Mirror arrow\n");
287 printf("\narrow_mat cylinder inc_dir\n0\n0\n7");
288 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
289 origin[0], origin[1], origin[2]+arrow_len,
290 origin[0], origin[1], origin[2],
291 arrow_rad);
292 printf("\narrow_mat cylinder mir_dir\n0\n0\n7");
293 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
294 origin[0], origin[1], origin[2],
295 origin[0] + arrow_len*refl[0],
296 origin[1] + arrow_len*refl[1],
297 origin[2] + arrow_len*refl[2],
298 arrow_rad);
299 printf("\narrow_mat cone mir_tip\n0\n0\n8");
300 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n",
301 origin[0] + (arrow_len-.5*tip_len)*refl[0],
302 origin[1] + (arrow_len-.5*tip_len)*refl[1],
303 origin[2] + (arrow_len-.5*tip_len)*refl[2],
304 origin[0] + (arrow_len+.5*tip_len)*refl[0],
305 origin[1] + (arrow_len+.5*tip_len)*refl[1],
306 origin[2] + (arrow_len+.5*tip_len)*refl[2],
307 2.*arrow_rad);
308 }
309
310 /* Put out transmitted direction arrow for the given incident vector */
311 static void
312 put_trans_arrow(const FVECT ivec, int inc_side)
313 {
314 const double arrow_len = 1.2*bsdf_rad;
315 const double tip_len = 0.2*bsdf_rad;
316 FVECT origin;
317 int i;
318
319 cvt_sposition(origin, ivec, inc_side);
320
321 printf("\n# Transmission arrow\n");
322 printf("\narrow_mat cylinder trans_dir\n0\n0\n7");
323 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
324 origin[0], origin[1], origin[2],
325 origin[0], origin[1], origin[2]-arrow_len,
326 arrow_rad);
327 printf("\narrow_mat cone trans_tip\n0\n0\n8");
328 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n",
329 origin[0], origin[1], origin[2]-arrow_len+.5*tip_len,
330 origin[0], origin[1], origin[2]-arrow_len-.5*tip_len,
331 2.*arrow_rad);
332 }
333
334 /* Compute rotation (x,y,z) => (xp,yp,zp) */
335 static int
336 addrot(char *xf, const FVECT xp, const FVECT yp, const FVECT zp)
337 {
338 int n = 0;
339 double theta;
340
341 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
342 /* Special case for X' along Z-axis */
343 theta = -atan2(yp[0], yp[1]);
344 sprintf(xf, " -ry %f -rz %f",
345 xp[2] < 0.0 ? 90.0 : -90.0,
346 theta*(180./PI));
347 return(4);
348 }
349 theta = atan2(yp[2], zp[2]);
350 if (!FEQ(theta,0.0)) {
351 sprintf(xf, " -rx %f", theta*(180./PI));
352 while (*xf) ++xf;
353 n += 2;
354 }
355 theta = Asin(-xp[2]);
356 if (!FEQ(theta,0.0)) {
357 sprintf(xf, " -ry %f", theta*(180./PI));
358 while (*xf) ++xf;
359 n += 2;
360 }
361 theta = atan2(xp[1], xp[0]);
362 if (!FEQ(theta,0.0)) {
363 sprintf(xf, " -rz %f", theta*(180./PI));
364 /* while (*xf) ++xf; */
365 n += 2;
366 }
367 return(n);
368 }
369
370 /* Put out BSDF surfaces */
371 static int
372 put_BSDFs(void)
373 {
374 const double scalef = bsdf_rad/(log10(overall_max) - min_log10);
375 FVECT ivec, sorg, upv;
376 RREAL vMtx[3][3];
377 char *fname;
378 char cmdbuf[256];
379 char xfargs[128];
380 int nxfa;
381 int i;
382
383 printf("\n# Gensurf output corresponding to %d incident directions\n",
384 NINCIDENT);
385
386 printf("\nvoid glow arrow_glow\n0\n0\n4 1 0 1 0\n");
387 printf("\nvoid mixfunc arrow_mat\n4 arrow_glow void 0.25 .\n0\n0\n");
388
389 if (front_comp & SDsampR) /* front reflection */
390 for (i = 0; i < NINCIDENT; i++) {
391 get_ivector(ivec, i);
392 put_mirror_arrow(ivec, 1);
393 cvt_sposition(sorg, ivec, 1);
394 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
395 upv[0] = ivec[0]*ivec[1]*(ivec[2] - 1.);
396 upv[1] = ivec[0]*ivec[0] + ivec[1]*ivec[1]*ivec[2];
397 upv[2] = -ivec[1]*(ivec[0]*ivec[0] + ivec[1]*ivec[1]);
398 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
399 sorg[0], sorg[1], sorg[2]);
400 nxfa = 6;
401 printf("\nvoid colorfunc scale_pat\n");
402 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
403 4+nxfa, xfargs);
404 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
405 if (SDcompXform(vMtx, ivec, upv) != SDEnone)
406 continue;
407 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
408 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
409 scalef, sorg[0], sorg[1], sorg[2]);
410 nxfa += 6;
411 fname = tfile_name(frpref, dsuffix, i);
412 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform %s",
413 frpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1,
414 xfargs);
415 if (!run_cmd(cmdbuf))
416 return(0);
417 }
418 if (front_comp & SDsampT) /* front transmission */
419 for (i = 0; i < NINCIDENT; i++) {
420 get_ivector(ivec, i);
421 put_trans_arrow(ivec, 1);
422 cvt_sposition(sorg, ivec, 1);
423 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
424 upv[0] = ivec[0]*ivec[1]*(ivec[2] - 1.);
425 upv[1] = ivec[0]*ivec[0] + ivec[1]*ivec[1]*ivec[2];
426 upv[2] = -ivec[1]*(ivec[0]*ivec[0] + ivec[1]*ivec[1]);
427 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
428 sorg[0], sorg[1], sorg[2]);
429 nxfa = 6;
430 printf("\nvoid colorfunc scale_pat\n");
431 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
432 4+nxfa, xfargs);
433 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
434 if (SDcompXform(vMtx, ivec, upv) != SDEnone)
435 continue;
436 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
437 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
438 scalef, sorg[0], sorg[1], sorg[2]);
439 nxfa += 6;
440 fname = tfile_name(ftpref, dsuffix, i);
441 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I %s",
442 ftpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1,
443 xfargs);
444 if (!run_cmd(cmdbuf))
445 return(0);
446 }
447 if (back_comp & SDsampR) /* rear reflection */
448 for (i = 0; i < NINCIDENT; i++) {
449 get_ivector(ivec, i);
450 put_mirror_arrow(ivec, -1);
451 cvt_sposition(sorg, ivec, -1);
452 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
453 upv[0] = ivec[0]*ivec[1]*(ivec[2] - 1.);
454 upv[1] = ivec[0]*ivec[0] + ivec[1]*ivec[1]*ivec[2];
455 upv[2] = -ivec[1]*(ivec[0]*ivec[0] + ivec[1]*ivec[1]);
456 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
457 sorg[0], sorg[1], sorg[2]);
458 nxfa = 6;
459 printf("\nvoid colorfunc scale_pat\n");
460 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
461 4+nxfa, xfargs);
462 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
463 if (SDcompXform(vMtx, ivec, upv) != SDEnone)
464 continue;
465 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
466 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
467 scalef, sorg[0], sorg[1], sorg[2]);
468 nxfa += 6;
469 fname = tfile_name(brpref, dsuffix, i);
470 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I -ry 180 %s",
471 brpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1,
472 xfargs);
473 if (!run_cmd(cmdbuf))
474 return(0);
475 }
476 if (back_comp & SDsampT) /* rear transmission */
477 for (i = 0; i < NINCIDENT; i++) {
478 get_ivector(ivec, i);
479 put_trans_arrow(ivec, -1);
480 cvt_sposition(sorg, ivec, -1);
481 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
482 upv[0] = ivec[0]*ivec[1]*(ivec[2] - 1.);
483 upv[1] = ivec[0]*ivec[0] + ivec[1]*ivec[1]*ivec[2];
484 upv[2] = -ivec[1]*(ivec[0]*ivec[0] + ivec[1]*ivec[1]);
485 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
486 sorg[0], sorg[1], sorg[2]);
487 nxfa = 6;
488 printf("\nvoid colorfunc scale_pat\n");
489 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
490 4+nxfa, xfargs);
491 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
492 if (SDcompXform(vMtx, ivec, upv) != SDEnone)
493 continue;
494 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
495 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
496 scalef, sorg[0], sorg[1], sorg[2]);
497 nxfa += 6;
498 fname = tfile_name(btpref, dsuffix, i);
499 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -ry 180 %s",
500 btpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1,
501 xfargs);
502 if (!run_cmd(cmdbuf))
503 return(0);
504 }
505 return(1);
506 }
507
508 /* Put our hemisphere material */
509 static void
510 put_matBSDF(const char *XMLfile)
511 {
512 const char *curdir = "./";
513
514 if (!XMLfile) { /* simple material */
515 printf("\n# Simplified material because we have no XML input\n");
516 printf("\nvoid brightfunc latlong\n2 latlong bsdf2rad.cal\n0\n0\n");
517 if ((front_comp|back_comp) & SDsampT)
518 printf("\nlatlong trans %s\n0\n0\n7 .75 .75 .75 0 .04 .5 .8\n",
519 sph_fmat);
520 else
521 printf("\nlatlong plastic %s\n0\n0\n5 .5 .5 .5 0 0\n",
522 sph_fmat);
523 printf("\ninherit alias %s %s\n", sph_bmat, sph_fmat);
524 return;
525 }
526 switch (XMLfile[0]) { /* avoid RAYPATH search */
527 case '.':
528 CASEDIRSEP:
529 curdir = "";
530 break;
531 case '\0':
532 fprintf(stderr, "%s: empty file name in put_matBSDF\n", progname);
533 exit(1);
534 break;
535 }
536 printf("\n# Actual BSDF materials for rendering the hemispheres\n");
537 printf("\nvoid BSDF BSDF_f\n6 0 \"%s%s\" upx upy upz bsdf2rad.cal\n0\n0\n",
538 curdir, XMLfile);
539 printf("\nvoid plastic black\n0\n0\n5 0 0 0 0 0\n");
540 printf("\nvoid mixfunc %s\n4 BSDF_f black latlong bsdf2rad.cal\n0\n0\n",
541 sph_fmat);
542 printf("\nvoid BSDF BSDF_b\n8 0 \"%s%s\" upx upy upz bsdf2rad.cal -ry 180\n0\n0\n",
543 curdir, XMLfile);
544 printf("\nvoid mixfunc %s\n4 BSDF_b black latlong bsdf2rad.cal\n0\n0\n",
545 sph_bmat);
546 }
547
548 /* Put out overhead parallel light source */
549 static void
550 put_source(void)
551 {
552 printf("\n# Overhead parallel light source\n");
553 printf("\nvoid light bright\n0\n0\n3 2500 2500 2500\n");
554 printf("\nbright source light\n0\n0\n4 0 0 1 2\n");
555 printf("\n# Material used for labels\n");
556 printf("\nvoid trans vellum\n0\n0\n7 1 1 1 0 0 .5 0\n");
557 }
558
559 /* Put out hemisphere(s) */
560 static void
561 put_hemispheres(void)
562 {
563 const int nsegs = 131;
564
565 printf("\n# Hemisphere(s) for showing BSDF appearance (if XML file)\n");
566 if (front_comp) {
567 printf(
568 "\n!genrev %s Front \"R*sin(A*t)\" \"R*cos(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n",
569 sph_fmat, nsegs, sph_rad, 0.495*PI, sph_xoffset);
570 printf("\nvoid brighttext front_text\n3 helvet.fnt . FRONT\n0\n");
571 printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n",
572 -.22*sph_rad + sph_xoffset, -1.4*sph_rad,
573 .35/5.*sph_rad, -1.6*.35/5.*sph_rad);
574 printf("\nfront_text alias front_label_mat vellum\n");
575 printf("\nfront_label_mat polygon front_label\n0\n0\n12");
576 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
577 -.25*sph_rad + sph_xoffset, -1.3*sph_rad,
578 -.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad,
579 .25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad,
580 .25*sph_rad + sph_xoffset, -1.3*sph_rad );
581 }
582 if (back_comp) {
583 printf(
584 "\n!genrev %s Back \"R*cos(A*t)\" \"R*sin(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n",
585 sph_bmat, nsegs, sph_rad, 0.495*PI, -sph_xoffset);
586 printf("\nvoid brighttext back_text\n3 helvet.fnt . BACK\n0\n");
587 printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n",
588 -.22*sph_rad - sph_xoffset, -1.4*sph_rad,
589 .35/4.*sph_rad, -1.6*.35/4.*sph_rad);
590 printf("\nback_text alias back_label_mat vellum\n");
591 printf("\nback_label_mat polygon back_label\n0\n0\n12");
592 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
593 -.25*sph_rad - sph_xoffset, -1.3*sph_rad,
594 -.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad,
595 .25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad,
596 .25*sph_rad - sph_xoffset, -1.3*sph_rad );
597 }
598 }
599
600 /* Put out falsecolor scale and name label */
601 static void
602 put_scale(void)
603 {
604 const double max_log10 = log10(overall_max);
605 const double leg_width = 2.*.75*(fabs(sph_xoffset) - sph_rad);
606 const double leg_height = 2.*sph_rad;
607 const int text_lines = 6;
608 const int text_digits = 8;
609 char fmt[16];
610 int i;
611
612 printf("\n# BSDF legend with falsecolor scale\n");
613 printf("\nvoid colorfunc lscale\n10 sca_red(Py) sca_grn(Py) sca_blu(Py)");
614 printf("\n\tbsdf2rad.cal -s %f -t 0 %f 0\n0\n0\n", leg_height, -.5*leg_height);
615 sprintf(fmt, "%%.%df", text_digits-3);
616 for (i = 0; i < text_lines; i++) {
617 char vbuf[16];
618 sprintf(vbuf, fmt, pow(10., (i+.5)/text_lines*(max_log10-min_log10)+min_log10));
619 printf("\nlscale brighttext lscale\n");
620 printf("3 helvet.fnt . %s\n0\n12\n", vbuf);
621 printf("\t%f %f 0\n", -.45*leg_width, ((i+.9)/text_lines-.5)*leg_height);
622 printf("\t%f 0 0\n", .8*leg_width/strlen(vbuf));
623 printf("\t0 %f 0\n", -.9/text_lines*leg_height);
624 printf("\t.01 1 -.1\n");
625 }
626 printf("\nlscale alias legend_mat vellum\n");
627 printf("\nlegend_mat polygon legend\n0\n0\n12");
628 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
629 -.5*leg_width, .5*leg_height,
630 -.5*leg_width, -.5*leg_height,
631 .5*leg_width, -.5*leg_height,
632 .5*leg_width, .5*leg_height);
633 printf("\nvoid brighttext BSDFtitle\n3 helvet.fnt . BSDF\n0\n12\n");
634 printf("\t%f %f 0\n", -.25*leg_width, .7*leg_height);
635 printf("\t%f 0 0\n", .4/4.*leg_width);
636 printf("\t0 %f 0\n", -.1*leg_height);
637 printf("\t.01 1 -.1\n");
638 printf("\nBSDFtitle alias title_mat vellum\n");
639 printf("\ntitle_mat polygon title\n0\n0\n12");
640 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
641 -.3*leg_width, .75*leg_height,
642 -.3*leg_width, .55*leg_height,
643 .3*leg_width, .55*leg_height,
644 .3*leg_width, .75*leg_height);
645 if (!bsdf_name[0])
646 return;
647 printf("\nvoid brighttext BSDFname\n3 helvet.fnt . \"%s\"\n0\n12\n", bsdf_name);
648 printf("\t%f %f 0\n", -.95*leg_width, -.6*leg_height);
649 printf("\t%f 0 0\n", 1.8/strlen(bsdf_name)*leg_width);
650 printf("\t0 %f 0\n", -.1*leg_height);
651 printf("\t.01 1 -.1\n");
652 printf("\nBSDFname alias name_mat vellum\n");
653 printf("\nname_mat polygon name\n0\n0\n12");
654 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
655 -leg_width, -.55*leg_height,
656 -leg_width, -.75*leg_height,
657 leg_width, -.75*leg_height,
658 leg_width, -.55*leg_height);
659 }
660
661 /* Convert MGF to Radiance in output */
662 static void
663 convert_mgf(const char *mgfdata)
664 {
665 int len = strlen(mgfdata);
666 char mgfn[128];
667 char radfn[128];
668 char cmdbuf[256];
669 float xmin, xmax, ymin, ymax, zmin, zmax;
670 double max_dim;
671 int fd;
672 FILE *fp;
673
674 if (!len) return;
675 strcpy(mgfn, tfile_name("geom", ".mgf", 0));
676 fd = open(mgfn, O_WRONLY|O_CREAT, 0666);
677 if (fd < 0 || write(fd, mgfdata, len) != len) {
678 fprintf(stderr, "%s: cannot write file '%s'\n",
679 progname, mgfn);
680 return;
681 }
682 close(fd);
683 strcpy(radfn, tfile_name("geom", ".rad", 0));
684 sprintf(cmdbuf, "mgf2rad %s > %s", mgfn, radfn);
685 if (!run_cmd(cmdbuf))
686 return;
687 sprintf(cmdbuf, "getbbox -w -h %s", radfn);
688 if ((fp = popen(cmdbuf, "r")) == NULL ||
689 fscanf(fp, "%f %f %f %f %f %f",
690 &xmin, &xmax, &ymin, &ymax, &zmin, &zmax) != 6
691 || pclose(fp) < 0) {
692 fprintf(stderr, "%s: error reading from command: %s\n",
693 progname, cmdbuf);
694 return;
695 }
696 max_dim = ymax - ymin;
697 if (xmax - xmin > max_dim)
698 max_dim = xmax - xmin;
699 if (front_comp) {
700 printf("\n# BSDF system geometry (front view)\n");
701 sprintf(cmdbuf, "xform -t %f %f %f -s %f -t %f %f 0 %s",
702 -.5*(xmin+xmax), -.5*(ymin+ymax), -zmax,
703 1.5*sph_rad/max_dim,
704 sph_xoffset, -2.5*sph_rad,
705 radfn);
706 if (!run_cmd(cmdbuf))
707 return;
708 }
709 if (back_comp) {
710 printf("\n# BSDF system geometry (back view)\n");
711 sprintf(cmdbuf, "xform -t %f %f %f -s %f -ry 180 -t %f %f 0 %s",
712 -.5*(xmin+xmax), -.5*(ymin+ymax), -zmin,
713 1.5*sph_rad/max_dim,
714 -sph_xoffset, -2.5*sph_rad,
715 radfn);
716 if (!run_cmd(cmdbuf))
717 return;
718 }
719 }
720
721 /* Check RBF input header line & get minimum BSDF value */
722 static int
723 rbf_headline(char *s, void *p)
724 {
725 char fmt[64];
726
727 if (formatval(fmt, s)) {
728 if (strcmp(fmt, BSDFREP_FMT))
729 return(-1);
730 return(0);
731 }
732 if (!strncmp(s, "IO_SIDES=", 9)) {
733 sscanf(s+9, "%d %d", &input_orient, &output_orient);
734 if (input_orient == output_orient) {
735 if (input_orient > 0)
736 front_comp |= SDsampR;
737 else
738 back_comp |= SDsampR;
739 } else if (input_orient > 0)
740 front_comp |= SDsampT;
741 else
742 back_comp |= SDsampT;
743 return(0);
744 }
745 if (!strncmp(s, "BSDFMIN=", 8)) {
746 sscanf(s+8, "%lf", &bsdf_min);
747 if (bsdf_min < overall_min)
748 overall_min = bsdf_min;
749 return(0);
750 }
751 return(0);
752 }
753
754 /* Produce a Radiance model plotting the given BSDF representation */
755 int
756 main(int argc, char *argv[])
757 {
758 int inpXML = -1;
759 SDData myBSDF;
760 int n;
761 /* check arguments */
762 progname = argv[0];
763 if (argc > 1 && (n = strlen(argv[1])-4) > 0) {
764 if (!strcasecmp(argv[1]+n, ".xml"))
765 inpXML = 1;
766 else if (!strcasecmp(argv[1]+n, ".sir"))
767 inpXML = 0;
768 }
769 if (inpXML < 0 || inpXML & (argc > 2)) {
770 fprintf(stderr, "Usage: %s bsdf.xml > output.rad\n", progname);
771 fprintf(stderr, " Or: %s hemi1.sir hemi2.sir .. > output.rad\n", progname);
772 return(1);
773 }
774 fputs("# ", stdout); /* copy our command */
775 printargs(argc, argv, stdout);
776 /* evaluate BSDF */
777 if (inpXML) {
778 SDclearBSDF(&myBSDF, argv[1]);
779 if (SDreportError(SDloadFile(&myBSDF, argv[1]), stderr))
780 return(1);
781 if (myBSDF.rf != NULL) front_comp |= SDsampR;
782 if (myBSDF.tf != NULL) front_comp |= SDsampT;
783 if (myBSDF.rb != NULL) back_comp |= SDsampR;
784 if (myBSDF.tb != NULL) back_comp |= SDsampT;
785 if (!front_comp & !back_comp) {
786 fprintf(stderr, "%s: nothing to plot in '%s'\n",
787 progname, argv[1]);
788 return(1);
789 }
790 if (front_comp & SDsampR && myBSDF.rLambFront.cieY < overall_min*PI)
791 overall_min = myBSDF.rLambFront.cieY/PI;
792 if (back_comp & SDsampR && myBSDF.rLambBack.cieY < overall_min*PI)
793 overall_min = myBSDF.rLambBack.cieY/PI;
794 if ((front_comp|back_comp) & SDsampT &&
795 myBSDF.tLamb.cieY < overall_min*PI)
796 overall_min = myBSDF.tLamb.cieY/PI;
797 set_minlog();
798 if (!build_wBSDF(&myBSDF))
799 return(1);
800 if (myBSDF.matn[0])
801 strcpy(bsdf_name, myBSDF.matn);
802 else
803 strcpy(bsdf_name, myBSDF.name);
804 strcpy(bsdf_manuf, myBSDF.makr);
805 put_matBSDF(argv[1]);
806 } else {
807 FILE *fp;
808 for (n = 1; n < argc; n++) {
809 fp = fopen(argv[n], "rb");
810 if (fp == NULL) {
811 fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n",
812 progname, argv[n]);
813 return(1);
814 }
815 if (getheader(fp, rbf_headline, NULL) < 0) {
816 fprintf(stderr, "%s: bad BSDF interpolant '%s'\n",
817 progname, argv[n]);
818 return(1);
819 }
820 fclose(fp);
821 }
822 set_minlog();
823 for (n = 1; n < argc; n++) {
824 fp = fopen(argv[n], "rb");
825 if (!load_bsdf_rep(fp))
826 return(1);
827 fclose(fp);
828 if (!build_wRBF())
829 return(1);
830 }
831 put_matBSDF(NULL);
832 }
833 put_source(); /* before hemispheres & labels */
834 put_hemispheres();
835 put_scale();
836 if (inpXML && myBSDF.mgf)
837 convert_mgf(myBSDF.mgf);
838 if (!put_BSDFs())
839 return(1);
840 cleanup_tmp();
841 return(0);
842 }