| 13 |
|
#include "resolu.h" |
| 14 |
|
#include "bsdfrep.h" |
| 15 |
|
|
| 16 |
+ |
#ifndef NINCIDENT |
| 17 |
|
#define NINCIDENT 37 /* number of samples/hemisphere */ |
| 18 |
< |
|
| 18 |
> |
#endif |
| 19 |
> |
#ifndef GRIDSTEP |
| 20 |
|
#define GRIDSTEP 2 /* our grid step size */ |
| 21 |
+ |
#endif |
| 22 |
|
#define SAMPRES (GRIDRES/GRIDSTEP) |
| 23 |
|
|
| 24 |
|
int front_comp = 0; /* front component flags (SDsamp*) */ |
| 27 |
|
double min_log10; /* smallest log10 value for plotting */ |
| 28 |
|
double overall_max = .0; /* overall maximum BSDF value */ |
| 29 |
|
|
| 30 |
< |
char ourTempDir[TEMPLEN] = ""; /* our temporary directory */ |
| 30 |
> |
char ourTempDir[TEMPLEN+1] = ""; /* our temporary directory */ |
| 31 |
|
|
| 32 |
|
const char frpref[] = "rf"; |
| 33 |
|
const char ftpref[] = "tf"; |
| 80 |
|
static char * |
| 81 |
|
tfile_name(const char *prefix, const char *suffix, int i) |
| 82 |
|
{ |
| 83 |
< |
static char buf[128]; |
| 83 |
> |
static char buf[256]; |
| 84 |
|
|
| 85 |
|
if (!ourTempDir[0]) { /* create temporary directory */ |
| 86 |
|
mktemp(strcpy(ourTempDir,TEMPLATE)); |
| 278 |
|
{ |
| 279 |
|
const double arrow_len = 1.2*bsdf_rad; |
| 280 |
|
const double tip_len = 0.2*bsdf_rad; |
| 281 |
+ |
static int cnt = 1; |
| 282 |
|
FVECT refl; |
| 283 |
|
int i; |
| 284 |
|
|
| 286 |
|
refl[1] = 2.*nrm[2]*nrm[1]; |
| 287 |
|
refl[2] = 2.*nrm[2]*nrm[2] - 1.; |
| 288 |
|
|
| 289 |
< |
printf("\n# Mirror arrow\n"); |
| 290 |
< |
printf("\nshaft_mat cylinder inc_dir\n0\n0\n7"); |
| 289 |
> |
printf("\n# Mirror arrow #%d\n", cnt); |
| 290 |
> |
printf("\nshaft_mat cylinder inc_dir%d\n0\n0\n7", cnt); |
| 291 |
|
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
| 292 |
|
origin[0], origin[1], origin[2]+arrow_len, |
| 293 |
|
origin[0], origin[1], origin[2], |
| 294 |
|
arrow_rad); |
| 295 |
< |
printf("\nshaft_mat cylinder mir_dir\n0\n0\n7"); |
| 295 |
> |
printf("\nshaft_mat cylinder mir_dir%d\n0\n0\n7", cnt); |
| 296 |
|
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
| 297 |
|
origin[0], origin[1], origin[2], |
| 298 |
|
origin[0] + arrow_len*refl[0], |
| 299 |
|
origin[1] + arrow_len*refl[1], |
| 300 |
|
origin[2] + arrow_len*refl[2], |
| 301 |
|
arrow_rad); |
| 302 |
< |
printf("\ntip_mat cone mir_tip\n0\n0\n8"); |
| 302 |
> |
printf("\ntip_mat cone mir_tip%d\n0\n0\n8", cnt); |
| 303 |
|
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", |
| 304 |
|
origin[0] + (arrow_len-.5*tip_len)*refl[0], |
| 305 |
|
origin[1] + (arrow_len-.5*tip_len)*refl[1], |
| 308 |
|
origin[1] + (arrow_len+.5*tip_len)*refl[1], |
| 309 |
|
origin[2] + (arrow_len+.5*tip_len)*refl[2], |
| 310 |
|
2.*arrow_rad); |
| 311 |
+ |
++cnt; |
| 312 |
|
} |
| 313 |
|
|
| 314 |
|
/* Put out transmitted direction arrow for the given incident vector */ |
| 317 |
|
{ |
| 318 |
|
const double arrow_len = 1.2*bsdf_rad; |
| 319 |
|
const double tip_len = 0.2*bsdf_rad; |
| 320 |
+ |
static int cnt = 1; |
| 321 |
|
int i; |
| 322 |
|
|
| 323 |
< |
printf("\n# Transmission arrow\n"); |
| 324 |
< |
printf("\nshaft_mat cylinder trans_dir\n0\n0\n7"); |
| 323 |
> |
printf("\n# Transmission arrow #%d\n", cnt); |
| 324 |
> |
printf("\nshaft_mat cylinder trans_dir%d\n0\n0\n7", cnt); |
| 325 |
|
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", |
| 326 |
|
origin[0], origin[1], origin[2], |
| 327 |
|
origin[0], origin[1], origin[2]-arrow_len, |
| 328 |
|
arrow_rad); |
| 329 |
< |
printf("\ntip_mat cone trans_tip\n0\n0\n8"); |
| 329 |
> |
printf("\ntip_mat cone trans_tip%d\n0\n0\n8", cnt); |
| 330 |
|
printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", |
| 331 |
|
origin[0], origin[1], origin[2]-arrow_len+.5*tip_len, |
| 332 |
|
origin[0], origin[1], origin[2]-arrow_len-.5*tip_len, |
| 333 |
< |
2.*arrow_rad); |
| 333 |
> |
2.*arrow_rad); |
| 334 |
> |
++cnt; |
| 335 |
|
} |
| 336 |
|
|
| 337 |
|
/* Compute rotation (x,y,z) => (xp,yp,zp) */ |