22 |
|
.5, 1., 1. |
23 |
|
}; |
24 |
|
|
25 |
+ |
#ifdef _WIN32 |
26 |
+ |
char validf[] = "-e \"valid(s,t)=X`SYS(s,t)^2+Y`SYS(s,t)^2+Z`SYS(s,t)^2-1e-7\""; |
27 |
+ |
#else |
28 |
+ |
char validf[] = "-e 'valid(s,t)=X`SYS(s,t)^2+Y`SYS(s,t)^2+Z`SYS(s,t)^2-1e-7'"; |
29 |
+ |
#endif |
30 |
+ |
|
31 |
|
char *progname; |
32 |
|
|
33 |
|
/* Produce a Radiance model plotting the indicated incident direction(s) */ |
97 |
|
#ifdef DEBUG |
98 |
|
fprintf(stderr, "Minimum BSDF set to %.4f\n", bsdf_min); |
99 |
|
#endif |
100 |
< |
min_log = log(bsdf_min*.5); |
100 |
> |
min_log = log(bsdf_min*.5 + 1e-5); |
101 |
|
/* output BSDF rep. */ |
102 |
|
for (n = 0; (n < 6) & (2*n+3 < argc); n++) { |
103 |
< |
double theta = atof(argv[2*n+2]); |
103 |
> |
double theta = (M_PI/180.)*atof(argv[2*n+2]); |
104 |
> |
double phi = (M_PI/180.)*atof(argv[2*n+3]); |
105 |
> |
if (theta < -FTINY) { |
106 |
> |
fprintf(stderr, "%s: theta values must be positive\n", |
107 |
> |
progname); |
108 |
> |
return(1); |
109 |
> |
} |
110 |
|
if (inpXML) { |
111 |
< |
input_orient = (theta <= 90.) ? 1 : -1; |
111 |
> |
input_orient = (theta <= M_PI/2.) ? 1 : -1; |
112 |
|
output_orient = doTrans ? -input_orient : input_orient; |
113 |
|
} |
114 |
< |
idir[2] = sin((M_PI/180.)*theta); |
115 |
< |
idir[0] = idir[2] * cos((M_PI/180.)*atof(argv[2*n+3])); |
116 |
< |
idir[1] = idir[2] * sin((M_PI/180.)*atof(argv[2*n+3])); |
114 |
> |
idir[2] = sin(theta); |
115 |
> |
idir[0] = idir[2] * cos(phi); |
116 |
> |
idir[1] = idir[2] * sin(phi); |
117 |
|
idir[2] = input_orient * sqrt(1. - idir[2]*idir[2]); |
118 |
|
#ifdef DEBUG |
119 |
|
fprintf(stderr, "Computing BSDF for incident direction (%.1f,%.1f)\n", |
124 |
|
#ifdef DEBUG |
125 |
|
if (inpXML) |
126 |
|
fprintf(stderr, "Hemispherical %s: %.3f\n", |
127 |
< |
(output_orient > 0 ? "reflection" : "transmission"), |
127 |
> |
(output_orient > 0 ^ input_orient > 0 ? |
128 |
> |
"transmission" : "reflection"), |
129 |
|
SDdirectHemi(idir, SDsampSp|SDsampDf | |
130 |
< |
(output_orient > 0 ? |
131 |
< |
SDsampR : SDsampT), &myBSDF)); |
130 |
> |
(output_orient > 0 ^ input_orient > 0 ? |
131 |
> |
SDsampT : SDsampR), &myBSDF)); |
132 |
|
else if (rbf == NULL) |
133 |
|
fputs("Empty RBF\n", stderr); |
134 |
|
else |
135 |
|
fprintf(stderr, "Hemispherical %s: %.3f\n", |
136 |
< |
(output_orient > 0 ? "reflection" : "transmission"), |
136 |
> |
(output_orient > 0 ^ input_orient > 0 ? |
137 |
> |
"transmission" : "reflection"), |
138 |
|
rbf->vtotal); |
139 |
|
#endif |
140 |
+ |
printf("# Incident direction (theta,phi) = (%.2f,%.2f) deg.\n\n", |
141 |
+ |
(180./M_PI)*theta, (180./M_PI)*phi); |
142 |
|
printf("void trans tmat\n0\n0\n7 %f %f %f .04 .04 .9 1\n", |
143 |
|
colarr[n][0], colarr[n][1], colarr[n][2]); |
144 |
|
if (showPeaks && rbf != NULL) { |
146 |
|
1.-colarr[n][0], 1.-colarr[n][1], 1.-colarr[n][2]); |
147 |
|
for (i = 0; i < rbf->nrbf; i++) { |
148 |
|
ovec_from_pos(odir, rbf->rbfa[i].gx, rbf->rbfa[i].gy); |
149 |
< |
bsdf = eval_rbfrep(rbf, odir) / (output_orient*odir[2]); |
150 |
< |
bsdf = log(bsdf) - min_log; |
149 |
> |
bsdf = eval_rbfrep(rbf, odir); |
150 |
> |
bsdf = log(bsdf + 1e-5) - min_log; |
151 |
|
printf("pmat sphere p%d\n0\n0\n4 %f %f %f %f\n", |
152 |
|
i+1, odir[0]*bsdf, odir[1]*bsdf, odir[2]*bsdf, |
153 |
|
.007*bsdf); |
154 |
|
} |
155 |
|
} |
156 |
|
fflush(stdout); |
157 |
< |
sprintf(buf, "gensurf tmat bsdf - - - %d %d", GRIDRES-1, GRIDRES-1); |
157 |
> |
sprintf(buf, "gensurf tmat bsdf%d - - - %d %d %s", n+1, |
158 |
> |
GRIDRES-1, GRIDRES-1, validf); |
159 |
|
fp = popen(buf, "w"); |
160 |
|
if (fp == NULL) { |
161 |
|
fprintf(stderr, "%s: cannot open '| %s'\n", progname, buf); |
171 |
|
return(1); |
172 |
|
bsdf = sval.cieY; |
173 |
|
} else |
174 |
< |
bsdf = eval_rbfrep(rbf, odir) / |
175 |
< |
(output_orient*odir[2]); |
159 |
< |
bsdf = log(bsdf) - min_log; |
174 |
> |
bsdf = eval_rbfrep(rbf, odir); |
175 |
> |
bsdf = log(bsdf + 1e-5) - min_log; |
176 |
|
fprintf(fp, "%.8e %.8e %.8e\n", |
177 |
|
odir[0]*bsdf, odir[1]*bsdf, odir[2]*bsdf); |
178 |
|
} |