--- ray/src/cv/bsdf2rad.c 2013/10/31 18:03:13 2.2 +++ ray/src/cv/bsdf2rad.c 2014/02/20 09:21:32 2.7 @@ -1,14 +1,16 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdf2rad.c,v 2.2 2013/10/31 18:03:13 greg Exp $"; +static const char RCSid[] = "$Id: bsdf2rad.c,v 2.7 2014/02/20 09:21:32 greg Exp $"; #endif /* - * Plot 3-D BSDF output based on scattering interpolant representation + * Plot 3-D BSDF output based on scattering interpolant or XML representation */ #define _USE_MATH_DEFINES #include +#include #include #include +#include "rtprocess.h" #include "bsdfrep.h" const float colarr[6][3] = { @@ -27,56 +29,111 @@ int main(int argc, char *argv[]) { int showPeaks = 0; - char buf[128]; + int doTrans = 0; + int inpXML = -1; + RBFNODE *rbf = NULL; FILE *fp; - RBFNODE *rbf; + char buf[128]; + SDData myBSDF; double bsdf, min_log; - FVECT dir; + FVECT idir, odir; int i, j, n; - + /* check arguments */ progname = argv[0]; if (argc > 1 && !strcmp(argv[1], "-p")) { ++showPeaks; ++argv; --argc; } - if (argc < 4) { + if (argc > 1 && !strcmp(argv[1], "-t")) { + ++doTrans; + ++argv; --argc; + } + if (argc >= 4 && (n = strlen(argv[1])-4) > 0) { + if (!strcasecmp(argv[1]+n, ".xml")) + inpXML = 1; + else if (!strcasecmp(argv[1]+n, ".sir")) + inpXML = 0; + } + if (inpXML < 0) { fprintf(stderr, "Usage: %s [-p] bsdf.sir theta1 phi1 .. > output.rad\n", progname); + fprintf(stderr, " Or: %s [-t] bsdf.xml theta1 phi1 .. > output.rad\n", progname); return(1); } /* load input */ - if ((fp = fopen(argv[1], "rb")) == NULL) { - fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", - progname, argv[1]); - return(1); + if (inpXML) { + SDclearBSDF(&myBSDF, argv[1]); + if (SDreportError(SDloadFile(&myBSDF, argv[1]), stderr)) + return(1); + bsdf_min = 1./M_PI; + if (myBSDF.rf != NULL && myBSDF.rLambFront.cieY < bsdf_min*M_PI) + bsdf_min = myBSDF.rLambFront.cieY/M_PI; + if (myBSDF.rb != NULL && myBSDF.rLambBack.cieY < bsdf_min*M_PI) + bsdf_min = myBSDF.rLambBack.cieY/M_PI; + if ((myBSDF.tf != NULL) | (myBSDF.tb != NULL) && + myBSDF.tLamb.cieY < bsdf_min*M_PI) + bsdf_min = myBSDF.tLamb.cieY/M_PI; + if (doTrans && (myBSDF.tf == NULL) & (myBSDF.tb == NULL)) { + fprintf(stderr, "%s: no transmitted component in '%s'\n", + progname, argv[1]); + return(1); + } + } else { + fp = fopen(argv[1], "rb"); + if (fp == NULL) { + fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", + progname, argv[1]); + return(1); + } + if (!load_bsdf_rep(fp)) + return(1); + fclose(fp); } - if (!load_bsdf_rep(fp)) - return(1); - fclose(fp); - min_log = log(bsdf_min*.5); +#ifdef DEBUG + fprintf(stderr, "Minimum BSDF set to %.4f\n", bsdf_min); +#endif + min_log = log(bsdf_min*.5 + 1e-5); /* output BSDF rep. */ for (n = 0; (n < 6) & (2*n+3 < argc); n++) { - dir[2] = sin((M_PI/180.)*atof(argv[2*n+2])); - dir[0] = dir[2] * cos((M_PI/180.)*atof(argv[2*n+3])); - dir[1] = dir[2] * sin((M_PI/180.)*atof(argv[2*n+3])); - dir[2] = input_orient * sqrt(1. - dir[2]*dir[2]); - fprintf(stderr, "Computing DSF for incident direction (%.1f,%.1f)\n", - get_theta180(dir), get_phi360(dir)); - rbf = advect_rbf(dir, 15000); - if (rbf == NULL) - fputs("NULL RBF\n", stderr); + double theta = atof(argv[2*n+2]); + if (inpXML) { + input_orient = (theta <= 90.) ? 1 : -1; + output_orient = doTrans ? -input_orient : input_orient; + } + idir[2] = sin((M_PI/180.)*theta); + idir[0] = idir[2] * cos((M_PI/180.)*atof(argv[2*n+3])); + idir[1] = idir[2] * sin((M_PI/180.)*atof(argv[2*n+3])); + idir[2] = input_orient * sqrt(1. - idir[2]*idir[2]); +#ifdef DEBUG + fprintf(stderr, "Computing BSDF for incident direction (%.1f,%.1f)\n", + get_theta180(idir), get_phi360(idir)); +#endif + if (!inpXML) + rbf = advect_rbf(idir, 15000); +#ifdef DEBUG + if (inpXML) + fprintf(stderr, "Hemispherical %s: %.3f\n", + (output_orient > 0 ? "reflection" : "transmission"), + SDdirectHemi(idir, SDsampSp|SDsampDf | + (output_orient > 0 ? + SDsampR : SDsampT), &myBSDF)); + else if (rbf == NULL) + fputs("Empty RBF\n", stderr); else - fprintf(stderr, "Hemispherical reflectance: %.3f\n", rbf->vtotal); + fprintf(stderr, "Hemispherical %s: %.3f\n", + (output_orient > 0 ? "reflection" : "transmission"), + rbf->vtotal); +#endif printf("void trans tmat\n0\n0\n7 %f %f %f .04 .04 .9 1\n", colarr[n][0], colarr[n][1], colarr[n][2]); if (showPeaks && rbf != NULL) { printf("void plastic pmat\n0\n0\n5 %f %f %f .04 .08\n", 1.-colarr[n][0], 1.-colarr[n][1], 1.-colarr[n][2]); for (i = 0; i < rbf->nrbf; i++) { - ovec_from_pos(dir, rbf->rbfa[i].gx, rbf->rbfa[i].gy); - bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]); - bsdf = log(bsdf) - min_log; + ovec_from_pos(odir, rbf->rbfa[i].gx, rbf->rbfa[i].gy); + bsdf = eval_rbfrep(rbf, odir) / (output_orient*odir[2]); + bsdf = log(bsdf + 1e-5) - min_log; printf("pmat sphere p%d\n0\n0\n4 %f %f %f %f\n", - i+1, dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf, + i+1, odir[0]*bsdf, odir[1]*bsdf, odir[2]*bsdf, .007*bsdf); } } @@ -89,11 +146,19 @@ main(int argc, char *argv[]) } for (i = 0; i < GRIDRES; i++) for (j = 0; j < GRIDRES; j++) { - ovec_from_pos(dir, i, j); - bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]); - bsdf = log(bsdf) - min_log; + ovec_from_pos(odir, i, j); + if (inpXML) { + SDValue sval; + if (SDreportError(SDevalBSDF(&sval, odir, + idir, &myBSDF), stderr)) + return(1); + bsdf = sval.cieY; + } else + bsdf = eval_rbfrep(rbf, odir) / + (output_orient*odir[2]); + bsdf = log(bsdf + 1e-5) - min_log; fprintf(fp, "%.8e %.8e %.8e\n", - dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); + odir[0]*bsdf, odir[1]*bsdf, odir[2]*bsdf); } if (rbf != NULL) free(rbf);