ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdf2rad.c
Revision: 2.19
Committed: Mon Apr 10 01:31:37 2017 UTC (7 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.18: +45 -36 lines
Log Message:
Corrected angles (I hope)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf2rad.c,v 2.18 2017/04/09 22:51:19 greg Exp $";
3 #endif
4 /*
5 * Plot 3-D BSDF output based on scattering interpolant or XML representation
6 */
7
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdlib.h>
11 #include "paths.h"
12 #include "rtmath.h"
13 #include "resolu.h"
14 #include "bsdfrep.h"
15
16 #define NINCIDENT 37 /* number of samples/hemisphere */
17
18 #define GRIDSTEP 2 /* our grid step size */
19 #define SAMPRES (GRIDRES/GRIDSTEP)
20
21 int front_comp = 0; /* front component flags (SDsamp*) */
22 int back_comp = 0; /* back component flags */
23 double overall_min = 1./PI; /* overall minimum BSDF value */
24 double min_log10; /* smallest log10 value for plotting */
25 double overall_max = .0; /* overall maximum BSDF value */
26
27 char ourTempDir[TEMPLEN] = ""; /* our temporary directory */
28
29 const FVECT Xaxis = {1., 0., 0.};
30 const FVECT Yaxis = {0., 1., 0.};
31 const FVECT Zaxis = {0., 0., 1.};
32
33 const char frpref[] = "frefl";
34 const char ftpref[] = "ftrans";
35 const char brpref[] = "brefl";
36 const char btpref[] = "btrans";
37 const char dsuffix[] = ".txt";
38
39 const char sph_mat[] = "BSDFmat";
40 const double sph_rad = 10.;
41 const double sph_xoffset = 15.;
42
43 #define bsdf_rad (sph_rad*.25)
44 #define arrow_rad (bsdf_rad*.015)
45
46 #define FEQ(a,b) ((a)-(b) <= 1e-7 && (b)-(a) <= 1e-7)
47
48 #define set_minlog() (min_log10 = log10(overall_min + 1e-5) - .1)
49
50 char *progname;
51
52 /* Get Fibonacci sphere vector (0 to NINCIDENT-1) */
53 static RREAL *
54 get_ivector(FVECT iv, int i)
55 {
56 const double phistep = PI*(3. - 2.236067978);
57 double r;
58
59 iv[2] = 1. - (i+.5)*(1./NINCIDENT);
60 r = sqrt(1. - iv[2]*iv[2]);
61 iv[0] = r * cos((i+1.)*phistep);
62 iv[1] = r * sin((i+1.)*phistep);
63
64 return(iv);
65 }
66
67 /* Convert incident vector into sphere position */
68 static RREAL *
69 cvt_sposition(FVECT sp, const FVECT iv, int inc_side)
70 {
71 sp[0] = -iv[0]*sph_rad - inc_side*sph_xoffset;
72 sp[1] = -iv[1]*sph_rad;
73 sp[2] = iv[2]*sph_rad;
74
75 return(sp);
76 }
77
78 /* Get temporary file name */
79 static char *
80 tfile_name(const char *prefix, const char *suffix, int i)
81 {
82 static char buf[128];
83
84 if (!ourTempDir[0]) { /* create temporary directory */
85 mktemp(strcpy(ourTempDir,TEMPLATE));
86 if (mkdir(ourTempDir, 0777) < 0) {
87 perror("mkdir");
88 exit(1);
89 }
90 }
91 if (!prefix) prefix = "T";
92 if (!suffix) suffix = "";
93 sprintf(buf, "%s/%s%03d%s", ourTempDir, prefix, i, suffix);
94 return(buf);
95 }
96
97 /* Remove temporary directory & contents */
98 static void
99 cleanup_tmp(void)
100 {
101 char buf[128];
102
103 if (!ourTempDir[0])
104 return;
105 #if defined(_WIN32) || defined(_WIN64)
106 sprintf(buf, "RMDIR %s /S /Q", ourTempDir);
107 #else
108 sprintf(buf, "rm -rf %s", ourTempDir);
109 #endif
110 system(buf);
111 }
112
113 /* Run the specified command, returning 1 if OK */
114 static int
115 run_cmd(const char *cmd)
116 {
117 fflush(stdout);
118 if (system(cmd)) {
119 fprintf(stderr, "%s: error running: %s\n", progname, cmd);
120 return(0);
121 }
122 return(1);
123 }
124
125 /* Plot surface points for the given BSDF incident angle */
126 static int
127 plotBSDF(const char *fname, const FVECT ivec, int dfl, const SDData *sd)
128 {
129 FILE *fp = fopen(fname, "w");
130 int i, j;
131
132 if (fp == NULL) {
133 fprintf(stderr, "%s: cannot open '%s' for writing\n",
134 progname, fname);
135 return(0);
136 }
137 if (ivec[2] > 0) {
138 input_orient = 1;
139 output_orient = dfl&SDsampR ? 1 : -1;
140 } else {
141 input_orient = -1;
142 output_orient = dfl&SDsampR ? -1 : 1;
143 }
144 for (i = SAMPRES; i--; )
145 for (j = 0; j < SAMPRES; j++) {
146 FVECT ovec;
147 SDValue sval;
148 double bsdf;
149 ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP);
150 if (SDreportError(SDevalBSDF(&sval, ovec,
151 ivec, sd), stderr))
152 return(0);
153 if (sval.cieY > overall_max)
154 overall_max = sval.cieY;
155 bsdf = (sval.cieY < overall_min) ? overall_min : sval.cieY;
156 bsdf = log10(bsdf) - min_log10;
157 fprintf(fp, "%.5f %.5f %.5f\n",
158 ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf);
159 }
160 if (fclose(fp) == EOF) {
161 fprintf(stderr, "%s: error writing data to '%s'\n",
162 progname, fname);
163 return(0);
164 }
165 return(1);
166 }
167
168 /* Build BSDF values from loaded XML file */
169 static int
170 build_wBSDF(const SDData *sd)
171 {
172 FVECT ivec;
173 int i;
174
175 if (front_comp & SDsampR)
176 for (i = 0; i < NINCIDENT; i++) {
177 get_ivector(ivec, i);
178 if (!plotBSDF(tfile_name(frpref, dsuffix, i),
179 ivec, SDsampR, sd))
180 return(0);
181 }
182 if (front_comp & SDsampT)
183 for (i = 0; i < NINCIDENT; i++) {
184 get_ivector(ivec, i);
185 if (!plotBSDF(tfile_name(ftpref, dsuffix, i),
186 ivec, SDsampT, sd))
187 return(0);
188 }
189 if (back_comp & SDsampR)
190 for (i = 0; i < NINCIDENT; i++) {
191 get_ivector(ivec, i);
192 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
193 if (!plotBSDF(tfile_name(brpref, dsuffix, i),
194 ivec, SDsampR, sd))
195 return(0);
196 }
197 if (back_comp & SDsampT)
198 for (i = 0; i < NINCIDENT; i++) {
199 get_ivector(ivec, i);
200 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
201 if (!plotBSDF(tfile_name(btpref, dsuffix, i),
202 ivec, SDsampT, sd))
203 return(0);
204 }
205 return(1);
206 }
207
208 /* Plot surface points using radial basis function */
209 static int
210 plotRBF(const char *fname, const RBFNODE *rbf)
211 {
212 FILE *fp = fopen(fname, "w");
213 int i, j;
214
215 if (fp == NULL) {
216 fprintf(stderr, "%s: cannot open '%s' for writing\n",
217 progname, fname);
218 return(0);
219 }
220 for (i = SAMPRES; i--; )
221 for (j = 0; j < SAMPRES; j++) {
222 FVECT ovec;
223 double bsdf;
224 ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP);
225 bsdf = eval_rbfrep(rbf, ovec);
226 if (bsdf > overall_max)
227 overall_max = bsdf;
228 else if (bsdf < overall_min)
229 bsdf = overall_min;
230 bsdf = log10(bsdf) - min_log10;
231 fprintf(fp, "%.5f %.5f %.5f\n",
232 ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf);
233 }
234 if (fclose(fp) == EOF) {
235 fprintf(stderr, "%s: error writing data to '%s'\n",
236 progname, fname);
237 return(0);
238 }
239 return(1);
240 }
241
242 /* Build BSDF values from scattering interpolant representation */
243 static int
244 build_wRBF(void)
245 {
246 const char *pref;
247 int i;
248
249 if (input_orient > 0) {
250 if (output_orient > 0)
251 pref = frpref;
252 else
253 pref = ftpref;
254 } else if (output_orient < 0)
255 pref = brpref;
256 else
257 pref = btpref;
258
259 for (i = 0; i < NINCIDENT; i++) {
260 FVECT ivec;
261 RBFNODE *rbf;
262 get_ivector(ivec, i);
263 if (input_orient < 0) {
264 ivec[0] = -ivec[0]; ivec[2] = -ivec[2];
265 }
266 rbf = advect_rbf(ivec, 15000);
267 if (!plotRBF(tfile_name(pref, dsuffix, i), rbf))
268 return(0);
269 if (rbf) free(rbf);
270 }
271 return(1); /* next call frees */
272 }
273
274 /* Put out mirror arrow for the given incident vector */
275 static void
276 put_mirror_arrow(const FVECT ivec, int inc_side)
277 {
278 const double arrow_len = 1.2*bsdf_rad;
279 const double tip_len = 0.2*bsdf_rad;
280 FVECT origin, refl;
281 int i;
282
283 cvt_sposition(origin, ivec, inc_side);
284
285 refl[0] = -2.*ivec[2]*ivec[0];
286 refl[1] = -2.*ivec[2]*ivec[1];
287 refl[2] = 2.*ivec[2]*ivec[2] - 1.;
288
289 printf("\n# Mirror arrow\n");
290 printf("\narrow_mat cylinder inc_dir\n0\n0\n7");
291 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
292 origin[0], origin[1], origin[2]+arrow_len,
293 origin[0], origin[1], origin[2],
294 arrow_rad);
295 printf("\narrow_mat cylinder mir_dir\n0\n0\n7");
296 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
297 origin[0], origin[1], origin[2],
298 origin[0] + arrow_len*refl[0],
299 origin[1] + arrow_len*refl[1],
300 origin[2] + arrow_len*refl[2],
301 arrow_rad);
302 printf("\narrow_mat cone mir_tip\n0\n0\n8");
303 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n",
304 origin[0] + (arrow_len-.5*tip_len)*refl[0],
305 origin[1] + (arrow_len-.5*tip_len)*refl[1],
306 origin[2] + (arrow_len-.5*tip_len)*refl[2],
307 origin[0] + (arrow_len+.5*tip_len)*refl[0],
308 origin[1] + (arrow_len+.5*tip_len)*refl[1],
309 origin[2] + (arrow_len+.5*tip_len)*refl[2],
310 2.*arrow_rad);
311 }
312
313 /* Put out transmitted direction arrow for the given incident vector */
314 static void
315 put_trans_arrow(const FVECT ivec, int inc_side)
316 {
317 const double arrow_len = 1.2*bsdf_rad;
318 const double tip_len = 0.2*bsdf_rad;
319 FVECT origin;
320 int i;
321
322 cvt_sposition(origin, ivec, inc_side);
323
324 printf("\n# Transmission arrow\n");
325 printf("\narrow_mat cylinder trans_dir\n0\n0\n7");
326 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n",
327 origin[0], origin[1], origin[2],
328 origin[0], origin[1], origin[2]-arrow_len,
329 arrow_rad);
330 printf("\narrow_mat cone trans_tip\n0\n0\n8");
331 printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n",
332 origin[0], origin[1], origin[2]-arrow_len+.5*tip_len,
333 origin[0], origin[1], origin[2]-arrow_len-.5*tip_len,
334 2.*arrow_rad);
335 }
336
337 /* Compute rotation (x,y,z) => (xp,yp,zp) */
338 static int
339 addrot(char *xf, const FVECT xp, const FVECT yp, const FVECT zp)
340 {
341 int n = 0;
342 double theta;
343
344 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
345 /* Special case for X' along Z-axis */
346 theta = -atan2(yp[0], yp[1]);
347 sprintf(xf, " -ry %f -rz %f",
348 xp[2] < 0.0 ? 90.0 : -90.0,
349 theta*(180./PI));
350 return(4);
351 }
352 theta = atan2(yp[2], zp[2]);
353 if (!FEQ(theta,0.0)) {
354 sprintf(xf, " -rx %f", theta*(180./PI));
355 while (*xf) ++xf;
356 n += 2;
357 }
358 theta = Asin(-xp[2]);
359 if (!FEQ(theta,0.0)) {
360 sprintf(xf, " -ry %f", theta*(180./PI));
361 while (*xf) ++xf;
362 n += 2;
363 }
364 theta = atan2(xp[1], xp[0]);
365 if (!FEQ(theta,0.0)) {
366 sprintf(xf, " -rz %f", theta*(180./PI));
367 /* while (*xf) ++xf; */
368 n += 2;
369 }
370 return(n);
371 }
372
373 /* Put out BSDF surfaces */
374 static int
375 put_BSDFs(void)
376 {
377 const double scalef = bsdf_rad/(log10(overall_max) - min_log10);
378 FVECT ivec, sorg;
379 RREAL vMtx[3][3];
380 char *fname;
381 char cmdbuf[256];
382 char xfargs[128];
383 int nxfa;
384 int i;
385
386 printf("\n# Gensurf output corresponding to %d incident directions\n",
387 NINCIDENT);
388
389 printf("\nvoid glow arrow_glow\n0\n0\n4 1 0 1 0\n");
390 printf("\nvoid mixfunc arrow_mat\n4 arrow_glow void .5 .\n0\n0\n");
391
392 if (front_comp & SDsampR) /* front reflection */
393 for (i = 0; i < NINCIDENT; i++) {
394 get_ivector(ivec, i);
395 put_mirror_arrow(ivec, 1);
396 cvt_sposition(sorg, ivec, 1);
397 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
398 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
399 sorg[0], sorg[1], sorg[2]);
400 nxfa = 6;
401 printf("\nvoid colorfunc scale_pat\n");
402 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
403 4+nxfa, xfargs);
404 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
405 SDcompXform(vMtx, ivec, Yaxis);
406 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
407 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
408 scalef, sorg[0], sorg[1], sorg[2]);
409 nxfa += 6;
410 fname = tfile_name(frpref, dsuffix, i);
411 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform %s",
412 frpref, i+1, fname, fname, fname, SAMPRES-1, SAMPRES-1,
413 xfargs);
414 if (!run_cmd(cmdbuf))
415 return(0);
416 }
417 if (front_comp & SDsampT) /* front transmission */
418 for (i = 0; i < NINCIDENT; i++) {
419 get_ivector(ivec, i);
420 put_trans_arrow(ivec, 1);
421 cvt_sposition(sorg, ivec, 1);
422 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
423 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
424 sorg[0], sorg[1], sorg[2]);
425 nxfa = 6;
426 printf("\nvoid colorfunc scale_pat\n");
427 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
428 4+nxfa, xfargs);
429 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
430 SDcompXform(vMtx, ivec, Yaxis);
431 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
432 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
433 scalef, sorg[0], sorg[1], sorg[2]);
434 nxfa += 6;
435 fname = tfile_name(ftpref, dsuffix, i);
436 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I %s",
437 ftpref, i+1, fname, fname, fname, SAMPRES-1, SAMPRES-1,
438 xfargs);
439 if (!run_cmd(cmdbuf))
440 return(0);
441 }
442 if (back_comp & SDsampR) /* rear reflection */
443 for (i = 0; i < NINCIDENT; i++) {
444 get_ivector(ivec, i);
445 put_mirror_arrow(ivec, -1);
446 cvt_sposition(sorg, ivec, -1);
447 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
448 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
449 sorg[0], sorg[1], sorg[2]);
450 nxfa = 6;
451 printf("\nvoid colorfunc scale_pat\n");
452 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
453 4+nxfa, xfargs);
454 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
455 SDcompXform(vMtx, ivec, Yaxis);
456 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
457 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
458 scalef, sorg[0], sorg[1], sorg[2]);
459 nxfa += 6;
460 fname = tfile_name(brpref, dsuffix, i);
461 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -I -ry 180 %s",
462 brpref, i+1, fname, fname, fname, SAMPRES-1, SAMPRES-1,
463 xfargs);
464 if (!run_cmd(cmdbuf))
465 return(0);
466 }
467 if (back_comp & SDsampT) /* rear transmission */
468 for (i = 0; i < NINCIDENT; i++) {
469 get_ivector(ivec, i);
470 put_trans_arrow(ivec, -1);
471 cvt_sposition(sorg, ivec, -1);
472 ivec[0] = -ivec[0]; ivec[1] = -ivec[1]; /* normal */
473 sprintf(xfargs, "-s %f -t %f %f %f", bsdf_rad,
474 sorg[0], sorg[1], sorg[2]);
475 nxfa = 6;
476 printf("\nvoid colorfunc scale_pat\n");
477 printf("%d bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n\t%s\n0\n0\n",
478 4+nxfa, xfargs);
479 printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n");
480 SDcompXform(vMtx, ivec, Yaxis);
481 nxfa = addrot(xfargs, vMtx[0], vMtx[1], vMtx[2]);
482 sprintf(xfargs+strlen(xfargs), " -s %f -t %f %f %f",
483 scalef, sorg[0], sorg[1], sorg[2]);
484 nxfa += 6;
485 fname = tfile_name(btpref, dsuffix, i);
486 sprintf(cmdbuf, "gensurf scale_mat %s%d %s %s %s %d %d | xform -ry 180 %s",
487 btpref, i+1, fname, fname, fname, SAMPRES-1, SAMPRES-1,
488 xfargs);
489 if (!run_cmd(cmdbuf))
490 return(0);
491 }
492 return(1);
493 }
494
495 /* Put our hemisphere material */
496 static void
497 put_matBSDF(const char *XMLfile)
498 {
499 const char *curdir = "./";
500
501 if (!XMLfile) { /* simple material */
502 printf("\n# Simplified material because we have no XML input\n");
503 printf("\nvoid brightfunc latlong\n2 latlong bsdf2rad.cal\n0\n0\n");
504 if ((front_comp|back_comp) & SDsampT)
505 printf("\nlatlong trans %s\n0\n0\n7 .75 .75 .75 0 0 .5 .8\n",
506 sph_mat);
507 else
508 printf("\nlatlong plastic %s\n0\n0\n5 .5 .5 .5 0 0\n",
509 sph_mat);
510 return;
511 }
512 switch (XMLfile[0]) { /* avoid RAYPATH search */
513 case '.':
514 CASEDIRSEP:
515 curdir = "";
516 break;
517 case '\0':
518 fprintf(stderr, "%s: empty file name in put_matBSDF\n", progname);
519 exit(1);
520 break;
521 }
522 printf("\n# Actual BSDF material for rendering the hemispheres\n");
523 printf("\nvoid BSDF BSDFmat\n6 0 \"%s%s\" 0 1 0 .\n0\n0\n",
524 curdir, XMLfile);
525 printf("\nvoid plastic black\n0\n0\n5 0 0 0 0 0\n");
526 printf("\nvoid mixfunc %s\n4 BSDFmat black latlong bsdf2rad.cal\n0\n0\n",
527 sph_mat);
528 }
529
530 /* Put out overhead parallel light source */
531 static void
532 put_source(void)
533 {
534 printf("\n# Overhead parallel light source\n");
535 printf("\nvoid light bright\n0\n0\n3 2000 2000 2000\n");
536 printf("\nbright source light\n0\n0\n4 0 0 1 2\n");
537 printf("\n# Material used for labels\n");
538 printf("\nvoid trans vellum\n0\n0\n7 1 1 1 0 0 .5 0\n");
539 }
540
541 /* Put out hemisphere(s) */
542 static void
543 put_hemispheres(void)
544 {
545 printf("\n# Hemisphere(s) for showing BSDF appearance (if XML file)\n");
546 printf("\nvoid antimatter anti_sph\n2 void %s\n0\n0\n", sph_mat);
547 if (front_comp) {
548 printf("\n%s sphere Front\n0\n0\n4 %f 0 0 %f\n",
549 sph_mat, -sph_xoffset, sph_rad);
550 printf("\n!genbox anti_sph sph_eraser %f %f %f | xform -t %f %f %f\n",
551 2.02*sph_rad, 2.02*sph_rad, 1.02*sph_rad,
552 -1.01*sph_rad - sph_xoffset, -1.01*sph_rad, -1.01*sph_rad);
553 printf("\nvoid brighttext front_text\n3 helvet.fnt . FRONT\n0\n");
554 printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n",
555 -.22*sph_rad - sph_xoffset, -1.4*sph_rad,
556 .35/5.*sph_rad, -1.6*.35/5.*sph_rad);
557 printf("\nfront_text alias front_label_mat vellum\n");
558 printf("\nfront_label_mat polygon front_label\n0\n0\n12");
559 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
560 -.25*sph_rad - sph_xoffset, -1.3*sph_rad,
561 -.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad,
562 .25*sph_rad - sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad,
563 .25*sph_rad - sph_xoffset, -1.3*sph_rad );
564 }
565 if (back_comp) {
566 printf("\n%s bubble Back\n0\n0\n4 %f 0 0 %f\n",
567 sph_mat, sph_xoffset, sph_rad);
568 printf("\n!genbox anti_sph sph_eraser %f %f %f | xform -t %f %f %f\n",
569 2.02*sph_rad, 2.02*sph_rad, 1.02*sph_rad,
570 -1.01*sph_rad + sph_xoffset, -1.01*sph_rad, -1.01*sph_rad);
571 printf("\nvoid brighttext back_text\n3 helvet.fnt . BACK\n0\n");
572 printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n",
573 -.22*sph_rad + sph_xoffset, -1.4*sph_rad,
574 .35/4.*sph_rad, -1.6*.35/4.*sph_rad);
575 printf("\nback_text alias back_label_mat vellum\n");
576 printf("\nback_label_mat polygon back_label\n0\n0\n12");
577 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
578 -.25*sph_rad + sph_xoffset, -1.3*sph_rad,
579 -.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad,
580 .25*sph_rad + sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad,
581 .25*sph_rad + sph_xoffset, -1.3*sph_rad );
582 }
583 }
584
585 /* Put out falsecolor scale and name label */
586 static void
587 put_scale(void)
588 {
589 const double max_log10 = log10(overall_max);
590 const double leg_width = 2.*.75*(sph_xoffset - sph_rad);
591 const double leg_height = 2.*sph_rad;
592 const int text_lines = 6;
593 const int text_digits = 8;
594 char fmt[16];
595 int i;
596
597 printf("\n# BSDF legend with falsecolor scale\n");
598 printf("\nvoid colorfunc lscale\n10 sca_red(Py) sca_grn(Py) sca_blu(Py)");
599 printf("\n\tbsdf2rad.cal -s %f -t 0 %f 0\n0\n0\n", leg_height, -.5*leg_height);
600 sprintf(fmt, "%%.%df", text_digits-3);
601 for (i = 0; i < text_lines; i++) {
602 char vbuf[16];
603 sprintf(vbuf, fmt, pow(10., (i+.5)/text_lines*(max_log10-min_log10)+min_log10));
604 printf("\nlscale brighttext lscale\n");
605 printf("3 helvet.fnt . %s\n0\n12\n", vbuf);
606 printf("\t%f %f 0\n", -.45*leg_width, ((i+.9)/text_lines-.5)*leg_height);
607 printf("\t%f 0 0\n", .8*leg_width/strlen(vbuf));
608 printf("\t0 %f 0\n", -.9/text_lines*leg_height);
609 printf("\t.01 1 -.1\n");
610 }
611 printf("\nlscale alias legend_mat vellum\n");
612 printf("\nlegend_mat polygon legend\n0\n0\n12");
613 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
614 -.5*leg_width, .5*leg_height,
615 -.5*leg_width, -.5*leg_height,
616 .5*leg_width, -.5*leg_height,
617 .5*leg_width, .5*leg_height);
618 printf("\nvoid brighttext BSDFtitle\n3 helvet.fnt . BSDF\n0\n12\n");
619 printf("\t%f %f 0\n", -.25*leg_width, .7*leg_height);
620 printf("\t%f 0 0\n", .4/4.*leg_width);
621 printf("\t0 %f 0\n", -.1*leg_height);
622 printf("\t.01 1 -.1\n");
623 printf("\nBSDFtitle alias title_mat vellum\n");
624 printf("\ntitle_mat polygon title\n0\n0\n12");
625 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
626 -.3*leg_width, .75*leg_height,
627 -.3*leg_width, .55*leg_height,
628 .3*leg_width, .55*leg_height,
629 .3*leg_width, .75*leg_height);
630 if (!bsdf_name[0])
631 return;
632 printf("\nvoid brighttext BSDFname\n3 helvet.fnt . \"%s\"\n0\n12\n", bsdf_name);
633 printf("\t%f %f 0\n", -.95*leg_width, -.6*leg_height);
634 printf("\t%f 0 0\n", 1.8/strlen(bsdf_name)*leg_width);
635 printf("\t0 %f 0\n", -.1*leg_height);
636 printf("\t.01 1 -.1\n");
637 printf("\nBSDFname alias name_mat vellum\n");
638 printf("\nname_mat polygon name\n0\n0\n12");
639 printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n",
640 -leg_width, -.55*leg_height,
641 -leg_width, -.75*leg_height,
642 leg_width, -.75*leg_height,
643 leg_width, -.55*leg_height);
644 }
645
646 /* Convert MGF to Radiance in output */
647 static void
648 convert_mgf(const char *mgfdata)
649 {
650 int len = strlen(mgfdata);
651 char mgfn[128];
652 char radfn[128];
653 char cmdbuf[256];
654 float xmin, xmax, ymin, ymax, zmin, zmax;
655 double max_dim;
656 int fd;
657 FILE *fp;
658
659 if (!len) return;
660 strcpy(mgfn, tfile_name("geom", ".mgf", 0));
661 fd = open(mgfn, O_WRONLY|O_CREAT, 0666);
662 if (fd < 0 || write(fd, mgfdata, len) != len) {
663 fprintf(stderr, "%s: cannot write file '%s'\n",
664 progname, mgfn);
665 return;
666 }
667 close(fd);
668 strcpy(radfn, tfile_name("geom", ".rad", 0));
669 sprintf(cmdbuf, "mgf2rad %s > %s", mgfn, radfn);
670 if (!run_cmd(cmdbuf))
671 return;
672 sprintf(cmdbuf, "getbbox -w -h %s", radfn);
673 if ((fp = popen(cmdbuf, "r")) == NULL ||
674 fscanf(fp, "%f %f %f %f %f %f",
675 &xmin, &xmax, &ymin, &ymax, &zmin, &zmax) != 6
676 || pclose(fp) < 0) {
677 fprintf(stderr, "%s: error reading from command: %s\n",
678 progname, cmdbuf);
679 return;
680 }
681 max_dim = ymax - ymin;
682 if (xmax - xmin > max_dim)
683 max_dim = xmax - xmin;
684 if (front_comp) {
685 printf("\n# BSDF system geometry (front view)\n");
686 sprintf(cmdbuf, "xform -t %f %f %f -s %f -t %f %f 0 %s",
687 -.5*(xmin+xmax), -.5*(ymin+ymax), -zmax,
688 1.5*sph_rad/max_dim,
689 -sph_xoffset, -2.5*sph_rad,
690 radfn);
691 if (!run_cmd(cmdbuf))
692 return;
693 }
694 if (back_comp) {
695 printf("\n# BSDF system geometry (back view)\n");
696 sprintf(cmdbuf, "xform -t %f %f %f -s %f -ry 180 -t %f %f 0 %s",
697 -.5*(xmin+xmax), -.5*(ymin+ymax), -zmin,
698 1.5*sph_rad/max_dim,
699 sph_xoffset, -2.5*sph_rad,
700 radfn);
701 if (!run_cmd(cmdbuf))
702 return;
703 }
704 }
705
706 /* Check RBF input header line & get minimum BSDF value */
707 static int
708 rbf_headline(char *s, void *p)
709 {
710 char fmt[64];
711
712 if (formatval(fmt, s)) {
713 if (strcmp(fmt, BSDFREP_FMT))
714 return(-1);
715 return(0);
716 }
717 if (!strncmp(s, "IO_SIDES=", 9)) {
718 sscanf(s+9, "%d %d", &input_orient, &output_orient);
719 if (input_orient == output_orient) {
720 if (input_orient > 0)
721 front_comp |= SDsampR;
722 else
723 back_comp |= SDsampR;
724 } else if (input_orient > 0)
725 front_comp |= SDsampT;
726 else
727 back_comp |= SDsampT;
728 return(0);
729 }
730 if (!strncmp(s, "BSDFMIN=", 8)) {
731 sscanf(s+8, "%lf", &bsdf_min);
732 if (bsdf_min < overall_min)
733 overall_min = bsdf_min;
734 return(0);
735 }
736 return(0);
737 }
738
739 /* Produce a Radiance model plotting the given BSDF representation */
740 int
741 main(int argc, char *argv[])
742 {
743 int inpXML = -1;
744 SDData myBSDF;
745 int n;
746 /* check arguments */
747 progname = argv[0];
748 if (argc > 1 && (n = strlen(argv[1])-4) > 0) {
749 if (!strcasecmp(argv[1]+n, ".xml"))
750 inpXML = 1;
751 else if (!strcasecmp(argv[1]+n, ".sir"))
752 inpXML = 0;
753 }
754 if (inpXML < 0 || inpXML & (argc > 2)) {
755 fprintf(stderr, "Usage: %s bsdf.xml > output.rad\n", progname);
756 fprintf(stderr, " Or: %s hemi1.sir hemi2.sir .. > output.rad\n", progname);
757 return(1);
758 }
759 fputs("# ", stdout); /* copy our command */
760 printargs(argc, argv, stdout);
761 /* evaluate BSDF */
762 if (inpXML) {
763 SDclearBSDF(&myBSDF, argv[1]);
764 if (SDreportError(SDloadFile(&myBSDF, argv[1]), stderr))
765 return(1);
766 if (myBSDF.rf != NULL) front_comp |= SDsampR;
767 if (myBSDF.tf != NULL) front_comp |= SDsampT;
768 if (myBSDF.rb != NULL) back_comp |= SDsampR;
769 if (myBSDF.tb != NULL) back_comp |= SDsampT;
770 if (!front_comp & !back_comp) {
771 fprintf(stderr, "%s: nothing to plot in '%s'\n",
772 progname, argv[1]);
773 return(1);
774 }
775 if (front_comp & SDsampR && myBSDF.rLambFront.cieY < overall_min*PI)
776 overall_min = myBSDF.rLambFront.cieY/PI;
777 if (back_comp & SDsampR && myBSDF.rLambBack.cieY < overall_min*PI)
778 overall_min = myBSDF.rLambBack.cieY/PI;
779 if ((front_comp|back_comp) & SDsampT &&
780 myBSDF.tLamb.cieY < overall_min*PI)
781 overall_min = myBSDF.tLamb.cieY/PI;
782 set_minlog();
783 if (!build_wBSDF(&myBSDF))
784 return(1);
785 if (myBSDF.matn[0])
786 strcpy(bsdf_name, myBSDF.matn);
787 else
788 strcpy(bsdf_name, myBSDF.name);
789 strcpy(bsdf_manuf, myBSDF.makr);
790 put_matBSDF(argv[1]);
791 } else {
792 FILE *fp;
793 for (n = 1; n < argc; n++) {
794 fp = fopen(argv[n], "rb");
795 if (fp == NULL) {
796 fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n",
797 progname, argv[n]);
798 return(1);
799 }
800 if (getheader(fp, rbf_headline, NULL) < 0) {
801 fprintf(stderr, "%s: bad BSDF interpolant '%s'\n",
802 progname, argv[n]);
803 return(1);
804 }
805 fclose(fp);
806 }
807 set_minlog();
808 for (n = 1; n < argc; n++) {
809 fp = fopen(argv[n], "rb");
810 if (!load_bsdf_rep(fp))
811 return(1);
812 fclose(fp);
813 if (!build_wRBF())
814 return(1);
815 }
816 put_matBSDF(NULL);
817 }
818 put_source(); /* before hemispheres & labels */
819 put_hemispheres();
820 put_scale();
821 if (inpXML && myBSDF.mgf)
822 convert_mgf(myBSDF.mgf);
823 if (!put_BSDFs())
824 return(1);
825 cleanup_tmp();
826 return(0);
827 }